These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21804965)

  • 1. Ionization potentials of adenine along the internal conversion pathways.
    Barbatti M; Ullrich S
    Phys Chem Chem Phys; 2011 Sep; 13(34):15492-500. PubMed ID: 21804965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast radiationless transition pathways through conical intersections in photo-excited 9H-adenine.
    Hassan WM; Chung WC; Shimakura N; Koseki S; Kono H; Fujimura Y
    Phys Chem Chem Phys; 2010; 12(20):5317-28. PubMed ID: 20358092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonadiabatic deactivation of 9H-adenine: a comprehensive picture based on mixed quantum-classical dynamics.
    Barbatti M; Lischka H
    J Am Chem Soc; 2008 May; 130(21):6831-9. PubMed ID: 18444646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are conical intersections responsible for the ultrafast processes of adenine, protonated adenine, and the corresponding nucleosides?
    Brøndsted Nielsen S; Sølling TI
    Chemphyschem; 2005 Jul; 6(7):1276-81. PubMed ID: 15929162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio studies on the radiationless decay mechanisms of the lowest excited singlet states of 9H-adenine.
    Perun S; Sobolewski AL; Domcke W
    J Am Chem Soc; 2005 May; 127(17):6257-65. PubMed ID: 15853331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conical intersections involving the dissociative 1pisigma* state in 9H-adenine: a quantum chemical ab initio study.
    Credo Chung W; Lan Z; Ohtsuki Y; Shimakura N; Domcke W; Fujimura Y
    Phys Chem Chem Phys; 2007 May; 9(17):2075-84. PubMed ID: 17464388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QM/MM nonadiabatic decay dynamics of 9H-adenine in aqueous solution.
    Lan Z; Lu Y; Fabiano E; Thiel W
    Chemphyschem; 2011 Jul; 12(10):1989-98. PubMed ID: 21674744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing excited state interactions by quantum-chemical modeling of vibronic activities: the R2PI spectrum of adenine.
    Conti I; Di Donato E; Negri F; Orlandi G
    J Phys Chem A; 2009 Dec; 113(52):15265-75. PubMed ID: 19754093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertical ionization potentials of nucleobases in a fully solvated DNA environment.
    Cauët E; Valiev M; Weare JH
    J Phys Chem B; 2010 May; 114(17):5886-94. PubMed ID: 20394358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excimer states in microhydrated adenine clusters.
    Smith VR; Samoylova E; Ritze HH; Radloff W; Schultz T
    Phys Chem Chem Phys; 2010 Sep; 12(33):9632-6. PubMed ID: 20556283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical ionization energies of adenine and 9-methyl adenine.
    Dolgounitcheva O; Zakrzewski VG; Ortiz JV
    J Phys Chem A; 2009 Dec; 113(52):14630-5. PubMed ID: 19594156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study toward understanding ultrafast internal conversion of excited 9H-adenine.
    Chen H; Li S
    J Phys Chem A; 2005 Sep; 109(38):8443-6. PubMed ID: 16834239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of pi-stacking, H-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers.
    Bravaya KB; Kostko O; Ahmed M; Krylov AI
    Phys Chem Chem Phys; 2010 Mar; 12(10):2292-307. PubMed ID: 20449342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of pentafluoroethane and its thermal decomposition using UV photoelectron spectroscopy and ab initio molecular orbital calculations.
    Copeland G; Lee EP; Dyke JM; Chow WK; Mok DK; Chau FT
    J Phys Chem A; 2010 Feb; 114(4):1816-25. PubMed ID: 20050710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional study of intradimer proton transfers in hydrated adenine dimer ions, A2(+)(H2O)n (n = 0-2).
    Park HS; Nam SH; Song JK; Park SM; Ryu S
    J Phys Chem A; 2008 Sep; 112(38):9023-30. PubMed ID: 18759417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering low energy deactivation channels in adenine.
    Conti I; Garavelli M; Orlandi G
    J Am Chem Soc; 2009 Nov; 131(44):16108-18. PubMed ID: 19845361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio determination of the ionization potentials of DNA and RNA nucleobases.
    Roca-Sanjuán D; Rubio M; Merchán M; Serrano-Andrés L
    J Chem Phys; 2006 Aug; 125(8):084302. PubMed ID: 16965007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of alkali metal ion-adenine complexes and hydrated complexes by IRMPD spectroscopy and electronic structure calculations.
    Rajabi K; Gillis EA; Fridgen TD
    J Phys Chem A; 2010 Mar; 114(10):3449-56. PubMed ID: 20163169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-state conical intersections in nucleic acid bases.
    Matsika S
    J Phys Chem A; 2005 Aug; 109(33):7538-45. PubMed ID: 16834123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Details of the excited-state potential energy surfaces of adenine by coupled cluster techniques.
    Benda Z; Szalay PG
    J Phys Chem A; 2014 Aug; 118(32):6197-207. PubMed ID: 25026452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.