BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 21804970)

  • 1. Automated cellular sample preparation using a Centrifuge-on-a-Chip.
    Mach AJ; Kim JH; Arshi A; Hur SC; Di Carlo D
    Lab Chip; 2011 Sep; 11(17):2827-34. PubMed ID: 21804970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis.
    Nordin M; Laurell T
    Lab Chip; 2012 Nov; 12(22):4610-6. PubMed ID: 22918416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-cost multi-core inertial microfluidic centrifuge for high-throughput cell concentration.
    Xiang N; Li Q; Shi Z; Zhou C; Jiang F; Han Y; Ni Z
    Electrophoresis; 2020 Jun; 41(10-11):875-882. PubMed ID: 31705675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double spiral microchannel for label-free tumor cell separation and enrichment.
    Sun J; Li M; Liu C; Zhang Y; Liu D; Liu W; Hu G; Jiang X
    Lab Chip; 2012 Oct; 12(20):3952-60. PubMed ID: 22868446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip integrated labelling, transport and detection of tumour cells.
    Woods J; Docker PT; Dyer CE; Haswell SJ; Greenman J
    Electrophoresis; 2011 Nov; 32(22):3188-95. PubMed ID: 22025027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).
    Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI
    Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabricated platform for studying stem cell fates.
    Chin VI; Taupin P; Sanga S; Scheel J; Gage FH; Bhatia SN
    Biotechnol Bioeng; 2004 Nov; 88(3):399-415. PubMed ID: 15486946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device.
    Du Z; Cheng KH; Vaughn MW; Collie NL; Gollahon LS
    Biomed Microdevices; 2007 Feb; 9(1):35-42. PubMed ID: 17103049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lab on a CD.
    Madou M; Zoval J; Jia G; Kido H; Kim J; Kim N
    Annu Rev Biomed Eng; 2006; 8():601-28. PubMed ID: 16834568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity.
    Park S; Zhang Y; Wang TH; Yang S
    Lab Chip; 2011 Sep; 11(17):2893-900. PubMed ID: 21776517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic devices for size-dependent separation of liver cells.
    Yamada M; Kano K; Tsuda Y; Kobayashi J; Yamato M; Seki M; Okano T
    Biomed Microdevices; 2007 Oct; 9(5):637-45. PubMed ID: 17530413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification.
    Chen X; Cui D; Liu C; Li H; Chen J
    Anal Chim Acta; 2007 Feb; 584(2):237-43. PubMed ID: 17386610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustofluidics 11: Affinity specific extraction and sample decomplexing using continuous flow acoustophoresis.
    Augustsson P; Laurell T
    Lab Chip; 2012 Apr; 12(10):1742-52. PubMed ID: 22465997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device.
    Jakobsson O; Oh SS; Antfolk M; Eisenstein M; Laurell T; Soh HT
    Anal Chem; 2015 Aug; 87(16):8497-502. PubMed ID: 26226316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices.
    Didar TF; Tabrizian M
    Lab Chip; 2010 Nov; 10(22):3043-53. PubMed ID: 20877893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic selection and retention of a single cardiac myocyte, on-chip dye loading, cell contraction by chemical stimulation, and quantitative fluorescent analysis of intracellular calcium.
    Li X; Li PC
    Anal Chem; 2005 Jul; 77(14):4315-22. PubMed ID: 16013841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle sorting using a porous membrane in a microfluidic device.
    Wei H; Chueh BH; Wu H; Hall EW; Li CW; Schirhagl R; Lin JM; Zare RN
    Lab Chip; 2011 Jan; 11(2):238-45. PubMed ID: 21057685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip high-speed sorting of micron-sized particles for high-throughput analysis.
    Holmes D; Sandison ME; Green NG; Morgan H
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):129-35. PubMed ID: 16441169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous dielectrophoretic cell separation microfluidic device.
    Li Y; Dalton C; Crabtree HJ; Nilsson G; Kaler KV
    Lab Chip; 2007 Feb; 7(2):239-48. PubMed ID: 17268627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.