These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 21804988)
1. Ferromagnetism/antiferromagnetism transition between semihydrogenated and fully-aminated single-wall carbon nanotubes. Deng Q; Zhao L; Luo Y; Zhang M; Jing L; Zhao Y Nanoscale; 2011 Sep; 3(9):3743-6. PubMed ID: 21804988 [TBL] [Abstract][Full Text] [Related]
2. Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons. Pang Q; Zhang Y; Zhang JM; Ji V; Xu KW Nanoscale; 2011 Oct; 3(10):4330-8. PubMed ID: 21897985 [TBL] [Abstract][Full Text] [Related]
3. Hydrogenation: a simple approach to realize semiconductor-half-metal-metal transition in boron nitride nanoribbons. Chen W; Li Y; Yu G; Li CZ; Zhang SB; Zhou Z; Chen Z J Am Chem Soc; 2010 Feb; 132(5):1699-705. PubMed ID: 20085366 [TBL] [Abstract][Full Text] [Related]
4. First-principles prediction on electronic and magnetic properties of hydrogenated AlN nanosheets. Zhang CW; Zheng FB J Comput Chem; 2011 Nov; 32(14):3122-8. PubMed ID: 21815179 [TBL] [Abstract][Full Text] [Related]
5. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers. Zhou Z; Zhao J; Schleyer Pv; Chen Z J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758 [TBL] [Abstract][Full Text] [Related]
6. Ferromagnetism induced by intrinsic defects and boron substitution in single-wall SiC nanotubes. Zhang Y; Qin H; Cao E; Gao F; Liu H; Hu J J Phys Chem A; 2011 Sep; 115(35):9987-92. PubMed ID: 21800870 [TBL] [Abstract][Full Text] [Related]
7. Induced ferromagnetism in one-side semihydrogenated silicene and germanene. Wang XQ; Li HD; Wang JT Phys Chem Chem Phys; 2012 Mar; 14(9):3031-6. PubMed ID: 22286024 [TBL] [Abstract][Full Text] [Related]
8. Carbene-functionalized single-walled carbon nanotubes and their electrical properties. Liu C; Zhang Q; Stellacci F; Marzari N; Zheng L; Zhan Z Small; 2011 May; 7(9):1257-63. PubMed ID: 21485006 [TBL] [Abstract][Full Text] [Related]
9. Magnetic nanoparticle-based separation of metallic and semiconducting carbon nanotubes. Kim HJ; Hwang S; Oh J; Chang YW; Lim EK; Haam S; Kim CS; Yoo KH Nanotechnology; 2011 Jan; 22(4):045703. PubMed ID: 21169656 [TBL] [Abstract][Full Text] [Related]
10. Carbon nanotube-nucleobase hybrids: nanorings from uracil-modified single-walled carbon nanotubes. Singh P; Toma FM; Kumar J; Venkatesh V; Raya J; Prato M; Verma S; Bianco A Chemistry; 2011 Jun; 17(24):6772-80. PubMed ID: 21542041 [TBL] [Abstract][Full Text] [Related]
11. Molecular-dynamic studies of carbon-water-carbon composite nanotubes. Zou J; Ji B; Feng XQ; Gao H Small; 2006 Nov; 2(11):1348-55. PubMed ID: 17192986 [TBL] [Abstract][Full Text] [Related]
18. Characterisation of nanohybrids of porphyrins with metallic and semiconducting carbon nanotubes by EPR and optical spectroscopy. Cambré S; Wenseleers W; Culin J; Van Doorslaer S; Fonseca A; Nagy JB; Goovaerts E Chemphyschem; 2008 Sep; 9(13):1930-41. PubMed ID: 18712730 [TBL] [Abstract][Full Text] [Related]
19. DFT study of zigzag (n, 0) single-walled carbon nanotubes: (13)C NMR chemical shifts. Kupka T; Stachów M; Stobiński L; Kaminský J J Mol Graph Model; 2016 Jun; 67():14-9. PubMed ID: 27155813 [TBL] [Abstract][Full Text] [Related]
20. Electron transport characteristics of organic molecule encapsulated carbon nanotubes. Lee SU; Belosludov RV; Mizuseki H; Kawazoe Y Nanoscale; 2011 Apr; 3(4):1773-9. PubMed ID: 21359303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]