These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 21805168)
1. Insight into the roles of hypoxanthine and thymidine [corrected] on cultivating antibody-producing CHO cells: cell growth, antibody production and long-term stability. Chen F; Fan L; Wang J; Zhou Y; Ye Z; Zhao L; Tan WS Appl Microbiol Biotechnol; 2012 Jan; 93(1):169-78. PubMed ID: 21805168 [TBL] [Abstract][Full Text] [Related]
2. A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Chusainow J; Yang YS; Yeo JH; Toh PC; Asvadi P; Wong NS; Yap MG Biotechnol Bioeng; 2009 Mar; 102(4):1182-96. PubMed ID: 18979540 [TBL] [Abstract][Full Text] [Related]
3. Biphasic addition strategy of hypoxanthine and thymidine for improving monoclonal antibody production. Chen F; Ye Z; Zhao L; Liu X; Fan L; Tan WS J Biosci Bioeng; 2012 Sep; 114(3):347-52. PubMed ID: 22652083 [TBL] [Abstract][Full Text] [Related]
4. On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Schlatter S; Stansfield SH; Dinnis DM; Racher AJ; Birch JR; James DC Biotechnol Prog; 2005; 21(1):122-33. PubMed ID: 15903249 [TBL] [Abstract][Full Text] [Related]
5. An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer. McLeod J; O'Callaghan PM; Pybus LP; Wilkinson SJ; Root T; Racher AJ; James DC Biotechnol Bioeng; 2011 Sep; 108(9):2193-204. PubMed ID: 21445882 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of unintended amino acid sequence changes in recombinant monoclonal antibodies expressed in Chinese Hamster Ovary (CHO) cells. Guo D; Gao A; Michels DA; Feeney L; Eng M; Chan B; Laird MW; Zhang B; Yu XC; Joly J; Snedecor B; Shen A Biotechnol Bioeng; 2010 Sep; 107(1):163-71. PubMed ID: 20506532 [TBL] [Abstract][Full Text] [Related]
7. Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Kim SJ; Kim NS; Ryu CJ; Hong HJ; Lee GM Biotechnol Bioeng; 1998 Apr; 58(1):73-84. PubMed ID: 10099263 [TBL] [Abstract][Full Text] [Related]
8. Control of culture environment for improved polyethylenimine-mediated transient production of recombinant monoclonal antibodies by CHO cells. Galbraith DJ; Tait AS; Racher AJ; Birch JR; James DC Biotechnol Prog; 2006; 22(3):753-62. PubMed ID: 16739959 [TBL] [Abstract][Full Text] [Related]
9. Metabolic analysis of antibody producing CHO cells in fed-batch production. Dean J; Reddy P Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898 [TBL] [Abstract][Full Text] [Related]
10. Culture temperature modulates aggregation of recombinant antibody in cho cells. Gomez N; Subramanian J; Ouyang J; Nguyen MD; Hutchinson M; Sharma VK; Lin AA; Yuk IH Biotechnol Bioeng; 2012 Jan; 109(1):125-36. PubMed ID: 21965146 [TBL] [Abstract][Full Text] [Related]
11. Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity. Park JH; Noh SM; Woo JR; Kim JW; Lee GM Biotechnol J; 2016 Mar; 11(4):487-96. PubMed ID: 26663903 [TBL] [Abstract][Full Text] [Related]
12. Impact of gene vector design on the control of recombinant monoclonal antibody production by Chinese hamster ovary cells. Davies SL; O'Callaghan PM; McLeod J; Pybus LP; Sung YH; Rance J; Wilkinson SJ; Racher AJ; Young RJ; James DC Biotechnol Prog; 2011; 27(6):1689-99. PubMed ID: 21882365 [TBL] [Abstract][Full Text] [Related]
13. Limitations to the development of humanized antibody producing Chinese hamster ovary cells using glutamine synthetase-mediated gene amplification. Jun SC; Kim MS; Hong HJ; Lee GM Biotechnol Prog; 2006; 22(3):770-80. PubMed ID: 16739961 [TBL] [Abstract][Full Text] [Related]
14. Growth factor withdrawal in combination with sodium butyrate addition extends culture longevity and enhances antibody production in CHO cells. Hong JK; Lee GM; Yoon SK J Biotechnol; 2011 Sep; 155(2):225-31. PubMed ID: 21723342 [TBL] [Abstract][Full Text] [Related]
15. Cytogenetic analysis of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Kim SJ; Lee GM Biotechnol Bioeng; 1999 Sep; 64(6):741-9. PubMed ID: 10417224 [TBL] [Abstract][Full Text] [Related]
16. Effect of low culture temperature on specific productivity and transcription level of anti-4-1BB antibody in recombinant Chinese hamster ovary cells. Yoon SK; Kim SH; Lee GM Biotechnol Prog; 2003; 19(4):1383-6. PubMed ID: 12892507 [TBL] [Abstract][Full Text] [Related]
17. Adaptation of Chinese hamster ovary cells to low culture temperature: cell growth and recombinant protein production. Yoon SK; Hong JK; Choo SH; Song JY; Park HW; Lee GM J Biotechnol; 2006 Apr; 122(4):463-72. PubMed ID: 16253368 [TBL] [Abstract][Full Text] [Related]
18. Perfusion culture of hybridoma cells for hyperproduction of IgG(2a) monoclonal antibody in a wave bioreactor-perfusion culture system. Tang YJ; Ohashi R; Hamel JF Biotechnol Prog; 2007; 23(1):255-64. PubMed ID: 17269696 [TBL] [Abstract][Full Text] [Related]
19. Reduced glutamine concentration improves protein production in growth-arrested CHO-DG44 and HEK-293E cells. Rajendra Y; Kiseljak D; Baldi L; Hacker DL; Wurm FM Biotechnol Lett; 2012 Apr; 34(4):619-26. PubMed ID: 22127760 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Chinese hamster ovary cell stability during repeated batch culture for large-scale antibody production. Kaneko Y; Sato R; Aoyagi H J Biosci Bioeng; 2010 Mar; 109(3):274-80. PubMed ID: 20159577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]