These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Predicting the position of moving audiovisual stimuli. Prime SL; Harris LR Exp Brain Res; 2010 Jun; 203(2):249-60. PubMed ID: 20352200 [TBL] [Abstract][Full Text] [Related]
4. A comparison of visual and auditory representational momentum in spatial tasks. Schmiedchen K; Freigang C; Rübsamen R; Richter N Atten Percept Psychophys; 2013 Oct; 75(7):1507-19. PubMed ID: 23864263 [TBL] [Abstract][Full Text] [Related]
5. Sounds can alter the perceived direction of a moving visual object. Teramoto W; Hidaka S; Sugita Y; Sakamoto S; Gyoba J; Iwaya Y; Suzuki Y J Vis; 2012 Mar; 12(3):. PubMed ID: 22410584 [TBL] [Abstract][Full Text] [Related]
7. A comparison of auditory and visual apparent motion presented individually and with crossmodal moving distractors. Strybel TZ; Vatakis A Perception; 2004; 33(9):1033-48. PubMed ID: 15560506 [TBL] [Abstract][Full Text] [Related]
8. 0 + 1 > 1: How adding noninformative sound improves performance on a visual task. Kim R; Peters MA; Shams L Psychol Sci; 2012 Jan; 23(1):6-12. PubMed ID: 22127367 [TBL] [Abstract][Full Text] [Related]
9. Cross-modal influences on representational momentum and representational gravity. Hubbard TL; Courtney JR Perception; 2010; 39(6):851-62. PubMed ID: 20698479 [TBL] [Abstract][Full Text] [Related]
10. Change of temporal-order judgment of sounds during long-lasting exposure to large-field visual motion. Teramoto W; Watanabe H; Umemura H Perception; 2008; 37(11):1649-66. PubMed ID: 19189730 [TBL] [Abstract][Full Text] [Related]
12. Influence of stimulus level on acoustic motion-direction sensitivity in barn owl midbrain neurons. Wagner H; Trinath T; Kautz D J Neurophysiol; 1994 May; 71(5):1907-16. PubMed ID: 8064356 [TBL] [Abstract][Full Text] [Related]
13. Capture of intermodal visual/tactile apparent motion by moving and static sound. Chen L; Zhou X Seeing Perceiving; 2011; 24(4):369-89. PubMed ID: 21864460 [TBL] [Abstract][Full Text] [Related]
14. Cross-modal integration of auditory and visual motion signals. Meyer GF; Wuerger SM Neuroreport; 2001 Aug; 12(11):2557-60. PubMed ID: 11496148 [TBL] [Abstract][Full Text] [Related]
15. Relationships between manual reaction time and saccade latency in response to visual and auditory stimuli. Engelken EJ; Stevens KW; Enderle JD Aviat Space Environ Med; 1991 Apr; 62(4):315-8. PubMed ID: 2031632 [TBL] [Abstract][Full Text] [Related]
16. Frequency-dependent integration of auditory and vestibular cues for self-motion perception. Shayman CS; Peterka RJ; Gallun FJ; Oh Y; Chang NN; Hullar TE J Neurophysiol; 2020 Mar; 123(3):936-944. PubMed ID: 31940239 [TBL] [Abstract][Full Text] [Related]
17. Mutual influences of intermodal visual/tactile apparent motion and auditory motion with uncrossed and crossed arms. Jiang Y; Chen L Multisens Res; 2013; 26(1-2):19-51. PubMed ID: 23713198 [TBL] [Abstract][Full Text] [Related]
18. Distortions of perceived auditory and visual space following adaptation to motion. Deas RW; Roach NW; McGraw PV Exp Brain Res; 2008 Dec; 191(4):473-85. PubMed ID: 18726589 [TBL] [Abstract][Full Text] [Related]
19. Sound frequency affects the auditory motion-onset response in humans. Sarrou M; Schmitz PM; Hamm N; Rübsamen R Exp Brain Res; 2018 Oct; 236(10):2713-2726. PubMed ID: 29998350 [TBL] [Abstract][Full Text] [Related]
20. Reaction time facilitation for horizontally moving auditory-visual stimuli. Harrison NR; Wuerger SM; Meyer GF J Vis; 2010 Dec; 10(14):16. PubMed ID: 21163957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]