BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 21806069)

  • 1. Which DFT functional performs well in the calculation of methylcobalamin? Comparison of the B3LYP and BP86 functionals and evaluation of the impact of empirical dispersion correction.
    Hirao H
    J Phys Chem A; 2011 Aug; 115(33):9308-13. PubMed ID: 21806069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Cobalt-Methyl Bond Dissociation in Methylcobalamin: New Benchmark Analysis Based on Density Functional Theory and Completely Renormalized Coupled-Cluster Calculations.
    Kozlowski PM; Kumar M; Piecuch P; Li W; Bauman NP; Hansen JA; Lodowski P; Jaworska M
    J Chem Theory Comput; 2012 Jun; 8(6):1870-94. PubMed ID: 26593822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodissociation of Co-C bond in methyl- and ethylcobalamin: an insight from TD-DFT calculations.
    Lodowski P; Jaworska M; Andruniów T; Kumar M; Kozlowski PM
    J Phys Chem B; 2009 May; 113(19):6898-909. PubMed ID: 19374399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent density functional theory study of cobalt corrinoids: Electronically excited states of methylcobalamin.
    Andruniów T; Jaworska M; Lodowski P; Zgierski MZ; Dreos R; Randaccio L; Kozlowski PM
    J Chem Phys; 2008 Aug; 129(8):085101. PubMed ID: 19044851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-cobalt bond distance and bond cleavage in one-electron reduced methylcobalamin: a failure of the conventional DFT method.
    Spataru T; Birke RL
    J Phys Chem A; 2006 Jul; 110(28):8599-604. PubMed ID: 16836419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative density functional theory study of the binding of ligands to Cu+ and Cu2+: Influence of the coordination and oxidation state.
    Ducéré JM; Goursot A; Berthomieu D
    J Phys Chem A; 2005 Jan; 109(2):400-8. PubMed ID: 16833359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of DFT in modeling electronic and structural properties of cobalamins.
    Kuta J; Patchkovskii S; Zgierski MZ; Kozlowski PM
    J Comput Chem; 2006 Sep; 27(12):1429-37. PubMed ID: 16807975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure of the S1 state in methylcobalamin: insight from CASSCF/MC-XQDPT2, EOM-CCSD, and TD-DFT calculations.
    Kornobis K; Kumar N; Lodowski P; Jaworska M; Piecuch P; Lutz JJ; Wong BM; Kozlowski PM
    J Comput Chem; 2013 May; 34(12):987-1004. PubMed ID: 23335227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT study of Co-C bond cleavage in the neutral and one-electron-reduced alkyl-cobalt(III) phthalocyanines.
    Galezowski W; Kuta J; Kozlowski PM
    J Phys Chem B; 2008 Mar; 112(10):3177-83. PubMed ID: 18271575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronically excited states of vitamin B12 and methylcobalamin: theoretical analysis of absorption, CD, and MCD data.
    Solheim H; Kornobis K; Ruud K; Kozlowski PM
    J Phys Chem B; 2011 Feb; 115(4):737-48. PubMed ID: 21171660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals.
    Burns LA; Vázquez-Mayagoitia A; Sumpter BG; Sherrill CD
    J Chem Phys; 2011 Feb; 134(8):084107. PubMed ID: 21361527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational frequencies of the homoleptic cobalt carbonyls: Co4(CO)12 and Co6(CO)16.
    Xie Y; King RB; Schaefer HF
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 May; 61(7):1693-9. PubMed ID: 15820904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive cleavage mechanism of methylcobalamin: elementary steps of Co-C bond breaking.
    Kozlowski PM; Kuta J; Galezowski W
    J Phys Chem B; 2007 Jul; 111(26):7638-45. PubMed ID: 17567060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic spectroscopy and computational studies of glutathionylco(III)balamin.
    Eisenberg AS; Likhtina IV; Znamenskiy VS; Birke RL
    J Phys Chem A; 2012 Jun; 116(25):6851-69. PubMed ID: 22568547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binuclear cyclopentadienylcobalt carbonyls: comparison with binuclear iron carbonyls.
    Wang H; Xie Y; King RB; Schaefer HF
    J Am Chem Soc; 2005 Aug; 127(33):11646-51. PubMed ID: 16104740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies.
    Feng Y; Liu L; Wang JT; Huang H; Guo QX
    J Chem Inf Comput Sci; 2003; 43(6):2005-13. PubMed ID: 14632451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.
    Khvostichenko D; Choi A; Boulatov R
    J Phys Chem A; 2008 Apr; 112(16):3700-11. PubMed ID: 18348545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant potential of glutathione: a theoretical study.
    Fiser B; Szori M; Jójárt B; Izsák R; Csizmadia IG; Viskolcz B
    J Phys Chem B; 2011 Sep; 115(38):11269-77. PubMed ID: 21853966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-C Bond Dissociation Energies in Cobalamin Derivatives and Dispersion Effects: Anomaly or Just Challenging?
    Qu ZW; Hansen A; Grimme S
    J Chem Theory Comput; 2015 Mar; 11(3):1037-45. PubMed ID: 26579755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.