These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 21806076)
1. In vitro proteolysis of myofibrillar proteins from beef skeletal muscle by caspase-3 and caspase-6. Huang F; Huang M; Zhou G; Xu X; Xue M J Agric Food Chem; 2011 Sep; 59(17):9658-63. PubMed ID: 21806076 [TBL] [Abstract][Full Text] [Related]
2. In vitro degradation of bovine myofibrils is caused by μ-calpain, not caspase-3. Mohrhauser DA; Underwood KR; Weaver AD J Anim Sci; 2011 Mar; 89(3):798-808. PubMed ID: 20971887 [TBL] [Abstract][Full Text] [Related]
3. Preliminary study on the effect of caspase-6 and calpain inhibitors on postmortem proteolysis of myofibrillar proteins in chicken breast muscle. Huang M; Huang F; Ma H; Xu X; Zhou G Meat Sci; 2012 Mar; 90(3):536-42. PubMed ID: 22098823 [TBL] [Abstract][Full Text] [Related]
4. The effect of active caspase-3 on degradation of chicken myofibrillar proteins and structure of myofibrils. Huang M; Huang F; Xue M; Xu X; Zhou G Food Chem; 2011 Sep; 128(1):22-7. PubMed ID: 25214324 [TBL] [Abstract][Full Text] [Related]
5. Effect of electrical stimulation on postmortem titin, nebulin, desmin, and troponin-T degradation and ultrastructural changes in bovine longissimus muscle. Ho CY; Stromer MH; Robson RM J Anim Sci; 1996 Jul; 74(7):1563-75. PubMed ID: 8818801 [TBL] [Abstract][Full Text] [Related]
6. Cleavage of the calpain inhibitor, calpastatin, during postmortem ageing of beef skeletal muscle. Huang F; Huang M; Zhang H; Guo B; Zhang D; Zhou G Food Chem; 2014 Apr; 148():1-6. PubMed ID: 24262518 [TBL] [Abstract][Full Text] [Related]
7. Effects of camptothecin, etoposide and Ca2+ on caspase-3 activity and myofibrillar disruption of chicken during postmortem ageing. Chen L; Feng XC; Lu F; Xu XL; Zhou GH; Li QY; Guo XY Meat Sci; 2011 Mar; 87(3):165-74. PubMed ID: 21055882 [TBL] [Abstract][Full Text] [Related]
8. Influence of oxidation on the susceptibility of purified desmin to degradation by μ-calpain, caspase-3 and -6. Chen Q; Huang J; Huang F; Huang M; Zhou G Food Chem; 2014 May; 150():220-6. PubMed ID: 24360443 [TBL] [Abstract][Full Text] [Related]
9. Post mortem development of meat quality as related to changes in cytoskeletal proteins of chicken muscles. Tomaszewska-Gras J; Schreurs FJ; Kijowski J Br Poult Sci; 2011 Apr; 52(2):189-201. PubMed ID: 21491242 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Effects of S-Nitrosylation on Caspase-3 Modification and Myofibril Degradation of Beef In Vitro. Hou Q; Ma C; Liu R; Kang Z; Zhang W J Agric Food Chem; 2024 Oct; 72(39):21772-21780. PubMed ID: 39295075 [TBL] [Abstract][Full Text] [Related]
11. Postmortem titin proteolysis is influenced by sarcomere length in bovine muscle. England EM; Fisher KD; Wells SJ; Mohrhauser DA; Gerrard DE; Weaver AD J Anim Sci; 2012 Mar; 90(3):989-95. PubMed ID: 21984717 [TBL] [Abstract][Full Text] [Related]
12. Effects of lactate/phosphate injection enhancement on oxidation stability and protein degradation in early postmortem beef cuts packaged in high oxygen modified atmosphere. Kim YH; Huff-Lonergan E; Sebranek JG; Lonergan SM Meat Sci; 2010 Nov; 86(3):852-8. PubMed ID: 20696536 [TBL] [Abstract][Full Text] [Related]
13. Influence of oxidation on heat shock protein 27 translocation, caspase-3 and calpain activities and myofibrils degradation in postmortem beef muscles. Ding Z; Wei Q; Zhang C; Zhang H; Huang F Food Chem; 2021 Mar; 340():127914. PubMed ID: 32889207 [TBL] [Abstract][Full Text] [Related]
14. Effects of electrical stimulation and postmortem storage on changes in titin, nebulin, desmin, troponin-T, and muscle ultrastructure in Bos indicus crossbred cattle. Ho CY; Stromer MH; Rouse G; Robson RM J Anim Sci; 1997 Feb; 75(2):366-76. PubMed ID: 9051459 [TBL] [Abstract][Full Text] [Related]
15. The development of meat tenderness is likely to be compartmentalised by ultimate pH. Lomiwes D; Farouk MM; Wu G; Young OA Meat Sci; 2014 Jan; 96(1):646-51. PubMed ID: 24060535 [TBL] [Abstract][Full Text] [Related]
16. Dephosphorylation enhances postmortem degradation of myofibrillar proteins. Li Z; Li M; Du M; Shen QW; Zhang D Food Chem; 2018 Apr; 245():233-239. PubMed ID: 29287365 [TBL] [Abstract][Full Text] [Related]
17. Proteolytic pattern of myofibrillar protein and meat tenderness as affected by breed and aging time. Marino R; Albenzio M; Della Malva A; Santillo A; Loizzo P; Sevi A Meat Sci; 2013 Oct; 95(2):281-7. PubMed ID: 23743033 [TBL] [Abstract][Full Text] [Related]
18. The effect of recombinant caspase 3 on myofibrillar proteins in porcine skeletal muscle. Kemp CM; Parr T Animal; 2008 Aug; 2(8):1254-64. PubMed ID: 22443739 [TBL] [Abstract][Full Text] [Related]
19. Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. Santé-Lhoutellier V; Astruc T; Marinova P; Greve E; Gatellier P J Agric Food Chem; 2008 Feb; 56(4):1488-94. PubMed ID: 18237130 [TBL] [Abstract][Full Text] [Related]
20. The protection of bovine skeletal myofibrils from proteolytic damage post mortem by small heat shock proteins. Lomiwes D; Hurst SM; Dobbie P; Frost DA; Hurst RD; Young OA; Farouk MM Meat Sci; 2014 Aug; 97(4):548-57. PubMed ID: 24769876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]