These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21806105)

  • 1. Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method.
    Zheng G; Niklasson AM; Karplus M
    J Chem Phys; 2011 Jul; 135(4):044122. PubMed ID: 21806105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient, "On-the-Fly", Born-Oppenheimer and Car-Parrinello-type Dynamics with Coupled Cluster Accuracy through Fragment Based Electronic Structure.
    Haycraft C; Li J; Iyengar SS
    J Chem Theory Comput; 2017 May; 13(5):1887-1901. PubMed ID: 28362491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Car-Parrinello Monitor for More Robust Born-Oppenheimer Molecular Dynamics.
    Wang LP; Song C
    J Chem Theory Comput; 2019 Aug; 15(8):4454-4467. PubMed ID: 31318557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended Lagrangian Born-Oppenheimer molecular dynamics for orbital-free density-functional theory and polarizable charge equilibration models.
    Niklasson AMN
    J Chem Phys; 2021 Feb; 154(5):054101. PubMed ID: 33557538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-Empirical Born-Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package.
    Marion A; Gokcan H; Monard G
    J Chem Inf Model; 2019 Jan; 59(1):206-214. PubMed ID: 30433776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shadow energy functionals and potentials in Born-Oppenheimer molecular dynamics.
    Niklasson AMN; Negre CFA
    J Chem Phys; 2023 Apr; 158(15):. PubMed ID: 37093997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Canonical-ensemble extended Lagrangian Born-Oppenheimer molecular dynamics for the linear scaling density functional theory.
    Hirakawa T; Suzuki T; Bowler DR; Miyazaki T
    J Phys Condens Matter; 2017 Oct; 29(40):405901. PubMed ID: 28726683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born-Oppenheimer Molecular Dynamics.
    Pes F; Polack É; Mazzeo P; Dusson G; Stamm B; Lipparini F
    J Phys Chem Lett; 2023 Nov; 14(43):9720-9726. PubMed ID: 37879072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the existence of the optimal order for wavefunction extrapolation in Born-Oppenheimer molecular dynamics.
    Fang J; Gao X; Song H; Wang H
    J Chem Phys; 2016 Jun; 144(24):244103. PubMed ID: 27369493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grassmann Extrapolation of Density Matrices for Born-Oppenheimer Molecular Dynamics.
    Polack É; Dusson G; Stamm B; Lipparini F
    J Chem Theory Comput; 2021 Nov; 17(11):6965-6973. PubMed ID: 34623810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.
    Vitale V; Dziedzic J; Albaugh A; Niklasson AM; Head-Gordon T; Skylaris CK
    J Chem Phys; 2017 Mar; 146(12):124115. PubMed ID: 28388116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and Accurate Born-Oppenheimer Molecular Dynamics for Large Molecular Systems.
    Peters LDM; Kussmann J; Ochsenfeld C
    J Chem Theory Comput; 2017 Nov; 13(11):5479-5485. PubMed ID: 29068678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next generation extended Lagrangian first principles molecular dynamics.
    Niklasson AMN
    J Chem Phys; 2017 Aug; 147(5):054103. PubMed ID: 28789552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric integration in Born-Oppenheimer molecular dynamics.
    Odell A; Delin A; Johansson B; Cawkwell MJ; Niklasson AM
    J Chem Phys; 2011 Dec; 135(22):224105. PubMed ID: 22168678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density-Matrix Based Extended Lagrangian Born-Oppenheimer Molecular Dynamics.
    Niklasson AMN
    J Chem Theory Comput; 2020 Jun; 16(6):3628-3640. PubMed ID: 32364707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated, energy-conserving Born-Oppenheimer molecular dynamics via Fock matrix extrapolation.
    Herbert JM; Head-Gordon M
    Phys Chem Chem Phys; 2005 Sep; 7(18):3269-75. PubMed ID: 16240040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shadow Molecular Dynamics and Atomic Cluster Expansions for Flexible Charge Models.
    Goff J; Zhang Y; Negre C; Rohskopf A; Niklasson AMN
    J Chem Theory Comput; 2023 Jul; 19(13):4255-4272. PubMed ID: 37382528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acceleration of Semiempirical Quantum Mechanical Calculations by Extended Lagrangian Molecular Dynamics Approach.
    Nam K
    J Chem Theory Comput; 2013 Aug; 9(8):3393-403. PubMed ID: 26584095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-Empirical Shadow Molecular Dynamics: A PyTorch Implementation.
    Kulichenko M; Barros K; Lubbers N; Fedik N; Zhou G; Tretiak S; Nebgen B; Niklasson AMN
    J Chem Theory Comput; 2023 Jun; 19(11):3209-3222. PubMed ID: 37163680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excited state Born-Oppenheimer molecular dynamics through coupling between time dependent DFT and AMOEBA.
    Nottoli M; Mennucci B; Lipparini F
    Phys Chem Chem Phys; 2020 Sep; 22(35):19532-19541. PubMed ID: 32844823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.