BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21806106)

  • 1. Development of a 3-body:many-body integrated fragmentation method for weakly bound clusters and application to water clusters (H2O)(n = 3-10, 16, 17).
    Bates DM; Smith JR; Janowski T; Tschumper GS
    J Chem Phys; 2011 Jul; 135(4):044123. PubMed ID: 21806106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and Accurate Methods for the Geometry Optimization of Water Clusters: Application of Analytic Gradients for the Two-Body:Many-Body QM:QM Fragmentation Method to (H2O)n, n = 3-10.
    Bates DM; Smith JR; Tschumper GS
    J Chem Theory Comput; 2011 Sep; 7(9):2753-60. PubMed ID: 26605466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CCSD(T) complete basis set limit relative energies for low-lying water hexamer structures.
    Bates DM; Tschumper GS
    J Phys Chem A; 2009 Apr; 113(15):3555-9. PubMed ID: 19354314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy and limitations of second-order many-body perturbation theory for predicting vertical detachment energies of solvated-electron clusters.
    Herbert JM; Head-Gordon M
    Phys Chem Chem Phys; 2006 Jan; 8(1):68-78. PubMed ID: 16482246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the rich energy landscape of sulfate-water clusters SO4(2-) (H2O)(n=3-7): an electronic structure approach.
    Lambrecht DS; Clark GN; Head-Gordon T; Head-Gordon M
    J Phys Chem A; 2011 Oct; 115(41):11438-54. PubMed ID: 21888323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-body:Many-body QM:QM vibrational frequencies: application to small hydrogen-bonded clusters.
    Howard JC; Tschumper GS
    J Chem Phys; 2013 Nov; 139(18):184113. PubMed ID: 24320260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward an Accurate and Inexpensive Estimation of CCSD(T)/CBS Binding Energies of Large Water Clusters.
    Sahu N; Singh G; Nandi A; Gadre SR
    J Phys Chem A; 2016 Jul; 120(28):5706-14. PubMed ID: 27351269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study on the characteristics of the interaction in naphthalene...(H2X)n=1,2 (X = O,S) clusters.
    Cabaleiro-Lago EM; Rodríguez-Otero J; Peña-Gallego A
    J Phys Chem A; 2008 Jul; 112(28):6344-50. PubMed ID: 18570360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing internal stabilization in weakly bound systems using atomic energies: hydrogen bonding in small water clusters.
    Albrecht L; Boyd RJ
    J Phys Chem A; 2012 Apr; 116(15):3946-51. PubMed ID: 22449223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of hydrated hydroperoxide anion (HOO-)(H2O)n clusters with alkaline hydrogen peroxide (HOOH)(OH-)(H2O)(n-1) clusters, n = 1-8, 20: an ab initio study.
    Anick DJ
    J Phys Chem A; 2011 Jun; 115(24):6327-38. PubMed ID: 21604682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer.
    Wang Y; Huang X; Shepler BC; Braams BJ; Bowman JM
    J Chem Phys; 2011 Mar; 134(9):094509. PubMed ID: 21384987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isomers of the uracil dimer: an ab initio benchmark study.
    Frey JA; Müller A; Losada M; Leutwyler S
    J Phys Chem B; 2007 Apr; 111(13):3534-42. PubMed ID: 17388514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilisation energy of C(6)H(6)...C(6)X(6) (X = F, Cl, Br, I, CN) complexes: complete basis set limit calculations at MP2 and CCSD(T) levels.
    Pluhácková K; Jurecka P; Hobza P
    Phys Chem Chem Phys; 2007 Feb; 9(6):755-60. PubMed ID: 17268688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimated MP2 and CCSD(T) interaction energies of n-alkane dimers at the basis set limit: comparison of the methods of Helgaker et al. and Feller.
    Tsuzuki S; Honda K; Uchimaru T; Mikami M
    J Chem Phys; 2006 Mar; 124(11):114304. PubMed ID: 16555885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of multicoefficient correlation methods, second-order Møller-Plesset perturbation theory, and density functional theory for H3O(+)(H2O)n (n = 1-5) and OH(-)(H2O)n (n = 1-4).
    Dahlke EE; Orthmeyer MA; Truhlar DG
    J Phys Chem B; 2008 Feb; 112(8):2372-81. PubMed ID: 18247594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio and density functional theory reinvestigation of gas-phase sulfuric acid monohydrate and ammonium hydrogen sulfate.
    Kurtén T; Sundberg MR; Vehkamäki H; Noppel M; Blomqvist J; Kulmala M
    J Phys Chem A; 2006 Jun; 110(22):7178-88. PubMed ID: 16737269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.