These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21806139)

  • 1. Atomistic molecular dynamics simulations of shock compressed quartz.
    Farrow MR; Probert MI
    J Chem Phys; 2011 Jul; 135(4):044508. PubMed ID: 21806139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of model potentials for molecular-dynamics simulations of silica.
    Herzbach D; Binder K; Müser MH
    J Chem Phys; 2005 Sep; 123(12):124711. PubMed ID: 16392515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosecond freezing of water under multiple shock wave compression: continuum modeling and wave profile measurements.
    Dolan DH; Johnson JN; Gupta YM
    J Chem Phys; 2005 Aug; 123(6):64702. PubMed ID: 16122330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shock-induced transformations in crystalline RDX: a uniaxial constant-stress Hugoniostat molecular dynamics simulation study.
    Bedrov D; Hooper JB; Smith GD; Sewell TD
    J Chem Phys; 2009 Jul; 131(3):034712. PubMed ID: 19624226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melting of iron at the physical conditions of the Earth's core.
    Nguyen JH; Holmes NC
    Nature; 2004 Jan; 427(6972):339-42. PubMed ID: 14737164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a simultaneous Hugoniot and temperature measurement for preheated-metal shock experiments: melting temperatures of Ta at pressures of 100 GPa.
    Li J; Zhou X; Li J; Wu Q; Cai L; Dai C
    Rev Sci Instrum; 2012 May; 83(5):053902. PubMed ID: 22667628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermophysical properties of liquid carbon dioxide under shock compressions: quantum molecular dynamic simulations.
    Wang C; Zhang P
    J Chem Phys; 2010 Oct; 133(13):134503. PubMed ID: 20942542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shock Hugoniot of osmium up to 800 GPa from first principles calculations.
    Joshi KD; Gupta SC; Banerjee S
    J Phys Condens Matter; 2009 Oct; 21(41):415402. PubMed ID: 21693986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale, long-term nonadiabatic electron molecular dynamics for describing material properties and phenomena in extreme environments.
    Jaramillo-Botero A; Su J; Qi A; Goddard WA
    J Comput Chem; 2011 Feb; 32(3):497-512. PubMed ID: 20812325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio study of shock compressed oxygen.
    Wang C; Zhang P
    J Chem Phys; 2010 Apr; 132(15):154307. PubMed ID: 20423181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport processes at alpha-quartz-water interfaces: insights from first-principles molecular dynamics simulations.
    Adeagbo WA; Doltsinis NL; Klevakina K; Renner J
    Chemphyschem; 2008 May; 9(7):994-1002. PubMed ID: 18404743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum mechanical corrections to simulated shock Hugoniot temperatures.
    Goldman N; Reed EJ; Fried LE
    J Chem Phys; 2009 Nov; 131(20):204103. PubMed ID: 19947671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase diagram of silica from computer simulation.
    Saika-Voivod I; Sciortino F; Grande T; Poole PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061507. PubMed ID: 15697374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusional anomaly and network dynamics in liquid silica.
    Sharma R; Mudi A; Chakravarty C
    J Chem Phys; 2006 Jul; 125(4):44705. PubMed ID: 16942172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations of shocked methane including self-consistent semiclassical quantum nuclear effects.
    Qi T; Reed EJ
    J Phys Chem A; 2012 Oct; 116(42):10451-9. PubMed ID: 23013329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock wave-induced phase transition in RDX single crystals.
    Patterson JE; Dreger ZA; Gupta YM
    J Phys Chem B; 2007 Sep; 111(37):10897-904. PubMed ID: 17718475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio parameterization of a charge optimized many-body forcefield for Si-SiO2: Validation and thermal transport in nanostructures.
    France-Lanord A; Soukiassian P; Glattli C; Wimmer E
    J Chem Phys; 2016 Mar; 144(10):104705. PubMed ID: 26979702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock wave propagation in dissociating low-Z liquids: D2.
    Belonoshko AB; Rosengren A; Skorodumova NV; Bastea S; Johansson B
    J Chem Phys; 2005 Mar; 122(12):124503. PubMed ID: 15836393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations on the local order of liquid and amorphous ZnTe.
    Rino JP; Borges D; Mota RC; Silva MA
    J Chem Phys; 2008 May; 128(18):184704. PubMed ID: 18532833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio simulations of the K-edge shift along the aluminum Hugoniot.
    Mazevet S; Zérah G
    Phys Rev Lett; 2008 Oct; 101(15):155001. PubMed ID: 18999605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.