These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21806145)

  • 1. Second virial coefficient for the dipolar hard sphere fluid.
    Henderson D
    J Chem Phys; 2011 Jul; 135(4):044514. PubMed ID: 21806145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dielectric virial expansion and the models of dipolar hard-sphere fluid.
    Morozov KI
    J Chem Phys; 2007 May; 126(19):194506. PubMed ID: 17523821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonconformal interaction models and thermodynamics of polar fluids.
    Avalos E; del Río F; Lago S
    J Phys Chem B; 2005 Jan; 109(1):508-17. PubMed ID: 16851042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second virial coefficients of dipolar hard spheres.
    Philipse AP; Kuipers BW
    J Phys Condens Matter; 2010 Aug; 22(32):325104. PubMed ID: 21386486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An equation of state for Stockmayer fluids based on a perturbation theory for dipolar hard spheres.
    Theiss M; van Westen T; Gross J
    J Chem Phys; 2019 Sep; 151(10):104102. PubMed ID: 31521101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equation of state and liquid-vapor equilibrium of polarizable Stockmayer fluids.
    Rocha-Ichante A; del Río F; Ávalos E
    J Chem Phys; 2010 Dec; 133(22):224301. PubMed ID: 21171683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vapor-liquid transitions of dipolar fluids in disordered porous media: performance of angle-averaged potentials.
    Spöler C; Klapp SH
    J Chem Phys; 2004 Nov; 121(19):9623-9. PubMed ID: 15538884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second virial coefficient of a generalized Lennard-Jones potential.
    González-Calderón A; Rocha-Ichante A
    J Chem Phys; 2015 Jan; 142(3):034305. PubMed ID: 25612707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase coexistence in polydisperse multi-Yukawa hard-sphere fluid: high temperature approximation.
    Kalyuzhnyi YV; Hlushak SP
    J Chem Phys; 2006 Jul; 125(3):34501. PubMed ID: 16863356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending the simple weighted density approximation for a hard-sphere fluid to a Lennard-Jones fluid II. Application.
    Zhou S
    J Colloid Interface Sci; 2005 Oct; 290(2):364-72. PubMed ID: 15935364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Many-fluid Onsager density functional theories for orientational ordering in mixtures of anisotropic hard-body fluids.
    Malijevský A; Jackson G; Varga S
    J Chem Phys; 2008 Oct; 129(14):144504. PubMed ID: 19045155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic and structural properties of finely discretized on-lattice hard-sphere fluids: Virial coefficients, free energies, and direct correlation functions.
    Siderius DW; Gelb LD
    J Chem Phys; 2009 Aug; 131(8):084503. PubMed ID: 19725614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface tension of associating fluids by Monte Carlo simulations.
    Tapia-Medina C; Orea P; Mier-Y-Teran L; Alejandre J
    J Chem Phys; 2004 Feb; 120(5):2337-42. PubMed ID: 15268372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An asymptotically consistent approximant method with application to soft- and hard-sphere fluids.
    Barlow NS; Schultz AJ; Weinstein SJ; Kofke DA
    J Chem Phys; 2012 Nov; 137(20):204102. PubMed ID: 23205976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Lagrangian theorem-based density-functional approximation free of adjustable parameters to nonhard-sphere fluid.
    Zhou S
    J Chem Phys; 2004 Jul; 121(2):895-901. PubMed ID: 15260621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel perturbation approach for the structure factor of the attractive hard-core Yukawa fluid.
    Melnyk R; Moucka F; Nezbeda I; Trokhymchuk A
    J Chem Phys; 2007 Sep; 127(9):094510. PubMed ID: 17824751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some comments on the second virial coefficient of semiflexible polymers.
    Ida D; Yoshizaki T
    J Chem Phys; 2008 Oct; 129(16):164902. PubMed ID: 19045309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to extend hard sphere density functional approximation to nonuniform nonhard sphere fluids: applicable to both subcritical and supercritical temperature regions.
    Zhou S
    J Chem Phys; 2006 Apr; 124(14):144501. PubMed ID: 16626208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase behavior of the modified-Yukawa fluid and its sticky limit.
    Schöll-Paschinger E; Valadez-Pérez NE; Benavides AL; Castañeda-Priego R
    J Chem Phys; 2013 Nov; 139(18):184902. PubMed ID: 24320299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-order virial coefficients and equation of state for hard sphere and hard disk systems.
    Hu J; Yu YX
    Phys Chem Chem Phys; 2009 Nov; 11(41):9382-90. PubMed ID: 19830321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.