BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21806161)

  • 1. Morphometric approach to thermodynamic quantities of solvation of complex molecules: extension to multicomponent solvent.
    Kodama R; Roth R; Harano Y; Kinoshita M
    J Chem Phys; 2011 Jul; 135(4):045103. PubMed ID: 21806161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins.
    Yamazaki T; Kovalenko A
    J Phys Chem B; 2011 Jan; 115(2):310-8. PubMed ID: 21166382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depletion potential between large spheres immersed in a multicomponent mixture of small spheres.
    Roth R; Kinoshita M
    J Chem Phys; 2006 Aug; 125(8):084910. PubMed ID: 16965060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A morphometric approach for the accurate solvation thermodynamics of proteins and ligands.
    Harano Y; Roth R; Chiba S
    J Comput Chem; 2013 Sep; 34(23):1969-74. PubMed ID: 23775361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A refined, efficient mean solvation force model that includes the interior volume contribution.
    Allison JR; Boguslawski K; Fraternali F; van Gunsteren WF
    J Phys Chem B; 2011 Apr; 115(15):4547-57. PubMed ID: 21434626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling nonpolar and polar solvation free energies in implicit solvent models.
    Dzubiella J; Swanson JM; McCammon JA
    J Chem Phys; 2006 Feb; 124(8):084905. PubMed ID: 16512740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular density functional theory of solvation: from polar solvents to water.
    Zhao S; Ramirez R; Vuilleumier R; Borgis D
    J Chem Phys; 2011 May; 134(19):194102. PubMed ID: 21599039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modified repulsive bridge correction to accurate evaluation of solvation free energy in integral equation theory for molecular liquids.
    Kido K; Yokogawa D; Sato H
    J Chem Phys; 2012 Jul; 137(2):024106. PubMed ID: 22803527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution.
    Fraternali F; Van Gunsteren WF
    J Mol Biol; 1996 Mar; 256(5):939-48. PubMed ID: 8601844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An accurate and efficient computation method of the hydration free energy of a large, complex molecule.
    Yoshidome T; Ekimoto T; Matubayasi N; Harano Y; Kinoshita M; Ikeguchi M
    J Chem Phys; 2015 May; 142(17):175101. PubMed ID: 25956125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U; Caflisch A
    J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular density functional theory: application to solvation and electron-transfer thermodynamics in polar solvents.
    Borgis D; Gendre L; Ramirez R
    J Phys Chem B; 2012 Mar; 116(8):2504-12. PubMed ID: 22268641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly parallelizable integral equation theory for three dimensional solvent distribution function: application to biomolecules.
    Yokogawa D; Sato H; Imai T; Sakaki S
    J Chem Phys; 2009 Feb; 130(6):064111. PubMed ID: 19222271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical analysis on hydration thermodynamics of proteins.
    Imai T; Harano Y; Kinoshita M; Kovalenko A; Hirata F
    J Chem Phys; 2006 Jul; 125(2):24911. PubMed ID: 16848615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volumetric properties of solvation in binary solvents.
    Lee S; Chalikian TV
    J Phys Chem B; 2009 Feb; 113(8):2443-50. PubMed ID: 19199694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular anatomy of preferential interaction coefficients by elucidating protein solvation in mixed solvents: methodology and application for lysozyme in aqueous glycerol.
    Vagenende V; Yap MG; Trout BL
    J Phys Chem B; 2009 Aug; 113(34):11743-53. PubMed ID: 19653677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the level-set method to the implicit solvation of nonpolar molecules.
    Cheng LT; Dzubiella J; McCammon JA; Li B
    J Chem Phys; 2007 Aug; 127(8):084503. PubMed ID: 17764265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution.
    Stephenson BC; Goldsipe A; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(8):2357-71. PubMed ID: 18247591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.