These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence. Ni T; Pinson JA; Gupta S; Santoro RJ Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570 [TBL] [Abstract][Full Text] [Related]
3. Quantitative planar temperature imaging in turbulent non-premixed flames using filtered Rayleigh scattering. McManus TA; Sutton JA Appl Opt; 2019 Apr; 58(11):2936-2947. PubMed ID: 31044899 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous Burst Imaging of Dual Species Using Planar Laser-Induced Fluorescence at 50 kHz in Turbulent Premixed Flames. Li Z; Rosell J; Aldén M; Richter M Appl Spectrosc; 2017 Jun; 71(6):1363-1367. PubMed ID: 27864444 [TBL] [Abstract][Full Text] [Related]
5. Biological and health effects of exposure to kerosene-based jet fuels and performance additives. Ritchie G; Still K; Rossi J; Bekkedal M; Bobb A; Arfsten D J Toxicol Environ Health B Crit Rev; 2003; 6(4):357-451. PubMed ID: 12775519 [TBL] [Abstract][Full Text] [Related]
6. Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser. Mansour MS; Chen YC Appl Opt; 1996 Jul; 35(21):4252-60. PubMed ID: 21102834 [TBL] [Abstract][Full Text] [Related]
7. Planar laser-induced-fluorescence imaging measurements of OH and hydrocarbon fuel fragments in high-pressure spray-flame combustion. Allen MG; McManus KR; Sonnenfroh DM; Paul PH Appl Opt; 1995 Sep; 34(27):6287-300. PubMed ID: 21060473 [TBL] [Abstract][Full Text] [Related]
8. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations. Chaudhuri S; Wu F; Law CK Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033005. PubMed ID: 24125342 [TBL] [Abstract][Full Text] [Related]
9. A small porous-plug burner for studies of combustion chemistry and soot formation. Campbell MF; Schrader PE; Catalano AL; Johansson KO; Bohlin GA; Richards-Henderson NK; Kliewer CJ; Michelsen HA Rev Sci Instrum; 2017 Dec; 88(12):125106. PubMed ID: 29289223 [TBL] [Abstract][Full Text] [Related]
10. Demonstration of a new laser diagnostic based on photodissociation spectroscopy for imaging mixture fraction in a non-premixed jet flame. Zhao Y; Tong C; Ma L Appl Spectrosc; 2010 Apr; 64(4):377-83. PubMed ID: 20412621 [TBL] [Abstract][Full Text] [Related]
11. Original use of a direct injection high efficiency nebulizer for the standardization of liquid fuels spray flames. Lemaire R; Maugendre M; Schuller T; Therssen E; Yon J Rev Sci Instrum; 2009 Oct; 80(10):105105. PubMed ID: 19895089 [TBL] [Abstract][Full Text] [Related]
12. Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine. Cadrazco M; Santamaría A; Jaramillo IC; Kaur K; Kelly KE; Agudelo JR Combust Flame; 2020 Apr; 214():65-79. PubMed ID: 32189720 [TBL] [Abstract][Full Text] [Related]
13. Design and characterization of a linear Hencken-type burner. Campbell MF; Bohlin GA; Schrader PE; Bambha RP; Kliewer CJ; Johansson KO; Michelsen HA Rev Sci Instrum; 2016 Nov; 87(11):115114. PubMed ID: 27910522 [TBL] [Abstract][Full Text] [Related]
14. Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies. Wang J; Chaos M; Yang B; Cool TA; Dryer FL; Kasper T; Hansen N; Osswald P; Kohse-Höinghaus K; Westmoreland PR Phys Chem Chem Phys; 2009 Mar; 11(9):1328-39. PubMed ID: 19224033 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames. Meyer TR; Roy S; Belovich VM; Corporan E; Gord JR Appl Opt; 2005 Jan; 44(3):445-54. PubMed ID: 15717834 [TBL] [Abstract][Full Text] [Related]
17. OH planar laser-induced fluorescence measurements with high spatio-temporal resolution for the study of auto-ignition. Arndt CM; Schießl R; Meier W Appl Opt; 2019 Apr; 58(10):C14-C22. PubMed ID: 31045026 [TBL] [Abstract][Full Text] [Related]
18. Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry. Li Y; Qi F Acc Chem Res; 2010 Jan; 43(1):68-78. PubMed ID: 19705821 [TBL] [Abstract][Full Text] [Related]
19. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation. Yin C; Kaer SK; Rosendahl L; Hvid SL Bioresour Technol; 2010 Jun; 101(11):4169-78. PubMed ID: 20117929 [TBL] [Abstract][Full Text] [Related]
20. CH and C2 measurements imply a radical pool within a pool in acetylene flames. Schofield K; Steinberg M J Phys Chem A; 2007 Mar; 111(11):2098-114. PubMed ID: 17388296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]