These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Real time measurement of stimulated dopamine release in the conscious rat using fast cyclic voltammetry: dopamine release is not observed during intracranial self stimulation. Kruk ZL; Cheeta S; Milla J; Muscat R; Williams JE; Willner P J Neurosci Methods; 1998 Jan; 79(1):9-19. PubMed ID: 9531455 [TBL] [Abstract][Full Text] [Related]
5. Real-time chemical measurements of dopamine release in the brain. Roberts JG; Lugo-Morales LZ; Loziuk PL; Sombers LA Methods Mol Biol; 2013; 964():275-94. PubMed ID: 23296789 [TBL] [Abstract][Full Text] [Related]
7. Correlation between behavior and extracellular dopamine levels in rat striatum: comparison of microdialysis and fast-scan cyclic voltammetry. Budygin EA; Kilpatrick MR; Gainetdinov RR; Wightman RM Neurosci Lett; 2000 Mar; 281(1):9-12. PubMed ID: 10686403 [TBL] [Abstract][Full Text] [Related]
8. In vitro and in vivo characterization of the properties of a multifiber carbon electrode allowing long-term electrochemical detection of dopamine in freely moving animals. el Ganouni S; Forni C; Nieoullon A Brain Res; 1987 Feb; 404(1-2):239-56. PubMed ID: 3494483 [TBL] [Abstract][Full Text] [Related]
9. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats. Li YT; Wickens JR; Huang YL; Pan WH; Chen FY; Chen JJ J Neural Eng; 2013 Aug; 10(4):046007. PubMed ID: 23770892 [TBL] [Abstract][Full Text] [Related]
10. A new technique for implanting a fine-wire microelectrode for chronic recording of unit activity from freely-moving mice. Oka JI; Imanishi M Neurosci Res; 2000 Jan; 36(1):93-6. PubMed ID: 10678536 [TBL] [Abstract][Full Text] [Related]
11. Methodology for coupling local application of dopamine and other chemicals with rapid in vivo electrochemical recordings in freely-moving rats. Gerhardt GA; Ksir C; Pivik C; Dickinson SD; Sabeti J; Zahniser NR J Neurosci Methods; 1999 Feb; 87(1):67-76. PubMed ID: 10065995 [TBL] [Abstract][Full Text] [Related]
12. Design Choices for Next-Generation Neurotechnology Can Impact Motion Artifact in Electrophysiological and Fast-Scan Cyclic Voltammetry Measurements. Nicolai EN; Michelson NJ; Settell ML; Hara SA; Trevathan JK; Asp AJ; Stocking KC; Lujan JL; Kozai TDY; Ludwig KA Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424427 [TBL] [Abstract][Full Text] [Related]
14. A freely-moving monkey treadmill model. Foster JD; Nuyujukian P; Freifeld O; Gao H; Walker R; I Ryu S; H Meng T; Murmann B; J Black M; Shenoy KV J Neural Eng; 2014 Aug; 11(4):046020. PubMed ID: 24995476 [TBL] [Abstract][Full Text] [Related]
15. A simple micromanipulator for multiple uses in freely moving rats: electrophysiology, voltammetry, and simultaneous intracerebral infusions. Rebec GV; Langley PE; Pierce RC; Wang Z; Heidenreich BA J Neurosci Methods; 1993 Apr; 47(1-2):53-9. PubMed ID: 8321014 [TBL] [Abstract][Full Text] [Related]
16. A system for measuring electrophysiological multiple unit activity and extracellular dopamine concentration at single electrodes. Glynn GE; Yamamoto BK J Neurosci Methods; 1993 May; 47(3):235-46. PubMed ID: 7505864 [TBL] [Abstract][Full Text] [Related]
17. Moving Fast-Scan Cyclic Voltammetry toward FDA Compliance with Capacitive Decoupling Patient Protection. Siegenthaler JR; Gushiken BC; Hill DF; Cowen SL; Heien ML ACS Sens; 2020 Jul; 5(7):1890-1899. PubMed ID: 32580544 [TBL] [Abstract][Full Text] [Related]