These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21806290)

  • 1. Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise.
    Sun Y; Hu S; Azorin-Peris V; Greenwald S; Chambers J; Zhu Y
    J Biomed Opt; 2011 Jul; 16(7):077010. PubMed ID: 21806290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncontact imaging photoplethysmography to effectively access pulse rate variability.
    Sun Y; Hu S; Azorin-Peris V; Kalawsky R; Greenwald S
    J Biomed Opt; 2013 Jun; 18(6):061205. PubMed ID: 23111602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-contact, synchronous dynamic measurement of respiratory rate and heart rate based on dual sensitive regions.
    Wei B; He X; Zhang C; Wu X
    Biomed Eng Online; 2017 Jan; 16(1):17. PubMed ID: 28249595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoplethysmography Revisited: From Contact to Noncontact, From Point to Imaging.
    Sun Y; Thakor N
    IEEE Trans Biomed Eng; 2016 Mar; 63(3):463-77. PubMed ID: 26390439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique.
    Nakajima K; Tamura T; Miike H
    Med Eng Phys; 1996 Jul; 18(5):365-72. PubMed ID: 8818134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frame Registration for Motion Compensation in Imaging Photoplethysmography.
    Iakovlev D; Hu S; Dwyer V
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iPPG 2 cPPG: Reconstructing contact from imaging photoplethysmographic signals using U-Net architectures.
    Bousefsaf F; Djeldjli D; Ouzar Y; Maaoui C; Pruski A
    Comput Biol Med; 2021 Nov; 138():104860. PubMed ID: 34562680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography.
    Maeda Y; Sekine M; Tamura T
    J Med Syst; 2011 Oct; 35(5):969-76. PubMed ID: 20703691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam.
    Sun Y; Papin C; Azorin-Peris V; Kalawsky R; Greenwald S; Hu S
    J Biomed Opt; 2012 Mar; 17(3):037005. PubMed ID: 22502577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of remote imaging photoplethysmography and cutaneous perfusion in volunteers.
    Rasche S; Huhle R; Junghans E; de Abreu MG; Ling Y; Trumpp A; Zaunseder S
    Sci Rep; 2020 Oct; 10(1):16464. PubMed ID: 33020579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion artifact cancellation and outlier rejection for clip-type ppg-based heart rate sensor.
    Shimazaki T; Hara S; Okuhata H; Nakamura H; Kawabata T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2026-9. PubMed ID: 26736684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise-Robust Heart Rate Estimation Algorithm from Photoplethysmography Signal with Low Computational Complexity.
    Shin J; Cho J
    J Healthc Eng; 2019; 2019():6283279. PubMed ID: 31249654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction.
    Zhang Z
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):1902-10. PubMed ID: 26186747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Motion Artifacts in Photoplethysmograph Sensors during Intensive Exercise for Accurate Heart Rate Calculation Based on Frequency Estimation and Notch Filtering.
    Wang M; Li Z; Zhang Q; Wang G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancellation of motion artifact induced by exercise for PPG-based heart rate sensing.
    Shimazaki T; Hara S; Okuhata H; Nakamura H; Kawabata T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3216-9. PubMed ID: 25570675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart Rate monitoring during physical exercise using wrist-type photoplethysmographic (PPG) signals.
    Ahmadi AK; Moradi P; Malihi M; Karimi S; Shamsollahi MB
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6166-9. PubMed ID: 26737700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of heart rate from foot worn photoplethysmography sensors during fast bike exercise.
    Jarchi D; Casson AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3155-2158. PubMed ID: 28268977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study on the effect of color spaces and color formats on heart rate measurement using the imaging photoplethysmography (IPPG) method.
    Zhang C; Tian J; Li D; Hou X; Wang L
    Technol Health Care; 2022; 30(S1):391-402. PubMed ID: 35124614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensor Fusion for Robust Heartbeat Detection during Driving.
    Warnecke JM; Boeker N; Spicher N; Wang J; Flormann M; Deserno TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():447-450. PubMed ID: 34891329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimum Wavelengths in the Near Infrared for Imaging Photoplethysmography.
    Wurtenberger F; Haist T; Reichert C; Faulhaber A; Boettcher T; Herkommer A
    IEEE Trans Biomed Eng; 2019 Oct; 66(10):2855-2860. PubMed ID: 30716029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.