BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 21806784)

  • 1. The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity.
    Soboh B; Pinske C; Kuhns M; Waclawek M; Ihling C; Trchounian K; Trchounian A; Sinz A; Sawers G
    BMC Microbiol; 2011 Aug; 11():173. PubMed ID: 21806784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron-sulfur cluster-containing small subunit.
    Pinske C; Krüger S; Soboh B; Ihling C; Kuhns M; Braussemann M; Jaroschinsky M; Sauer C; Sargent F; Sinz A; Sawers RG
    Arch Microbiol; 2011 Dec; 193(12):893-903. PubMed ID: 21717143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromogenic assessment of the three molybdo-selenoprotein formate dehydrogenases in
    Hartwig S; Pinske C; Sawers RG
    Biochem Biophys Rep; 2015 May; 1():62-67. PubMed ID: 29124134
    [No Abstract]   [Full Text] [Related]  

  • 4. Zymographic differentiation of [NiFe]-hydrogenases 1, 2 and 3 of Escherichia coli K-12.
    Pinske C; Jaroschinsky M; Sargent F; Sawers G
    BMC Microbiol; 2012 Jul; 12():134. PubMed ID: 22769583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Role of Escherichia coli Hydrogenases and Formate Dehydrogenases in the F
    Gevorgyan H; Trchounian A; Trchounian K
    IUBMB Life; 2018 Oct; 70(10):1040-1047. PubMed ID: 30161297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans.
    de Bok FA; Hagedoorn PL; Silva PJ; Hagen WR; Schiltz E; Fritsche K; Stams AJ
    Eur J Biochem; 2003 Jun; 270(11):2476-85. PubMed ID: 12755703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase.
    Graentzdoerffer A; Rauh D; Pich A; Andreesen JR
    Arch Microbiol; 2003; 179(2):116-30. PubMed ID: 12560990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic deficiences revealed in the biotechnologically important model bacterium Escherichia coli BL21(DE3).
    Pinske C; Bönn M; Krüger S; Lindenstrauss U; Sawers RG
    PLoS One; 2011; 6(8):e22830. PubMed ID: 21826210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Model [NiFe]-Hydrogenases of Escherichia coli.
    Sargent F
    Adv Microb Physiol; 2016; 68():433-507. PubMed ID: 27134027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and the F(0)F(1)-ATPase.
    Trchounian K; Poladyan A; Vassilian A; Trchounian A
    Crit Rev Biochem Mol Biol; 2012; 47(3):236-49. PubMed ID: 22313414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping cell envelope and periplasm protein interactions of Escherichia coli respiratory formate dehydrogenases by chemical cross-linking and mass spectrometry.
    Zorn M; Ihling CH; Golbik R; Sawers RG; Sinz A
    J Proteome Res; 2014 Dec; 13(12):5524-35. PubMed ID: 25251153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron restriction induces preferential down-regulation of H(2)-consuming over H(2)-evolving reactions during fermentative growth of Escherichia coli.
    Pinske C; Sawers G
    BMC Microbiol; 2011 Aug; 11():196. PubMed ID: 21880124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH.
    Bagramyan K; Mnatsakanyan N; Poladian A; Vassilian A; Trchounian A
    FEBS Lett; 2002 Apr; 516(1-3):172-8. PubMed ID: 11959127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of crystalline formate dehydrogenase H from Escherichia coli. Stabilization, EPR spectroscopy, and preliminary crystallographic analysis.
    Gladyshev VN; Boyington JC; Khangulov SV; Grahame DA; Stadtman TC; Sun PD
    J Biol Chem; 1996 Apr; 271(14):8095-100. PubMed ID: 8626495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic Formate and Hydrogen Metabolism.
    Pinske C; Sawers RG
    EcoSal Plus; 2016 Oct; 7(1):. PubMed ID: 27735784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Escherichia coli formate hydrogenlyase activity by formate at alkaline pH.
    Mnatsakanyan N; Vassilian A; Navasardyan L; Bagramyan K; Trchounian A
    Curr Microbiol; 2002 Oct; 45(4):281-6. PubMed ID: 12192527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formate hydrogenlyase: A group 4 [NiFe]-hydrogenase in tandem with a formate dehydrogenase.
    Finney AJ; Sargent F
    Adv Microb Physiol; 2019; 74():465-486. PubMed ID: 31126535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli formate dehydrogenase mutants with altered selenopolymer profiles.
    Cox JC
    Arch Microbiol; 1989; 152(4):397-400. PubMed ID: 2684082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hydrogenases and formate dehydrogenases of Escherichia coli.
    Sawers G
    Antonie Van Leeuwenhoek; 1994; 66(1-3):57-88. PubMed ID: 7747941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolution of distinct selenium-containing formate dehydrogenases from Escherichia coli.
    Cox JC; Edwards ES; DeMoss JA
    J Bacteriol; 1981 Mar; 145(3):1317-24. PubMed ID: 7009577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.