These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 21806811)
1. Inferring causal genomic alterations in breast cancer using gene expression data. Tran LM; Zhang B; Zhang Z; Zhang C; Xie T; Lamb JR; Dai H; Schadt EE; Zhu J BMC Syst Biol; 2011 Aug; 5():121. PubMed ID: 21806811 [TBL] [Abstract][Full Text] [Related]
2. MutComFocal: an integrative approach to identifying recurrent and focal genomic alterations in tumor samples. Trifonov V; Pasqualucci L; Dalla Favera R; Rabadan R BMC Syst Biol; 2013 Mar; 7():25. PubMed ID: 23531283 [TBL] [Abstract][Full Text] [Related]
3. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis. Li A; Chapuy B; Varelas X; Sebastiani P; Monti S Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402 [TBL] [Abstract][Full Text] [Related]
4. The application of gene co-expression network reconstruction based on CNVs and gene expression microarray data in breast cancer. Xu Y; Duanmu H; Chang Z; Zhang S; Li Z; Li Z; Liu Y; Li K; Qiu F; Li X Mol Biol Rep; 2012 Feb; 39(2):1627-37. PubMed ID: 21611746 [TBL] [Abstract][Full Text] [Related]
5. Identification of recurrent focal copy number variations and their putative targeted driver genes in ovarian cancer. Zhang L; Yuan Y; Lu KH; Zhang L BMC Bioinformatics; 2016 May; 17(1):222. PubMed ID: 27230211 [TBL] [Abstract][Full Text] [Related]
6. Integrative network-based approach identifies key genetic elements in breast invasive carcinoma. Hamed M; Spaniol C; Zapp A; Helms V BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S2. PubMed ID: 26040466 [TBL] [Abstract][Full Text] [Related]
7. Noise cancellation using total variation for copy number variation detection. Zare F; Hosny A; Nabavi S BMC Bioinformatics; 2018 Oct; 19(Suppl 11):361. PubMed ID: 30343665 [TBL] [Abstract][Full Text] [Related]
8. Network-guided analysis of genes with altered somatic copy number and gene expression reveals pathways commonly perturbed in metastatic melanoma. Valsesia A; Rimoldi D; Martinet D; Ibberson M; Benaglio P; Quadroni M; Waridel P; Gaillard M; Pidoux M; Rapin B; Rivolta C; Xenarios I; Simpson AJ; Antonarakis SE; Beckmann JS; Jongeneel CV; Iseli C; Stevenson BJ PLoS One; 2011 Apr; 6(4):e18369. PubMed ID: 21494657 [TBL] [Abstract][Full Text] [Related]
9. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration. Zhang W; Wang SL Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714 [TBL] [Abstract][Full Text] [Related]
10. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes. Lu X; Li X; Liu P; Qian X; Miao Q; Peng S Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829 [TBL] [Abstract][Full Text] [Related]
11. Understanding the functional impact of copy number alterations in breast cancer using a network modeling approach. Srihari S; Kalimutho M; Lal S; Singla J; Patel D; Simpson PT; Khanna KK; Ragan MA Mol Biosyst; 2016 Mar; 12(3):963-72. PubMed ID: 26805938 [TBL] [Abstract][Full Text] [Related]
12. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data. Zhang J; Zhang S; Wang Y; Zhang XS BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034 [TBL] [Abstract][Full Text] [Related]
13. Concordance of copy number loss and down-regulation of tumor suppressor genes: a pan-cancer study. Zhao M; Zhao Z BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):532. PubMed ID: 27556634 [TBL] [Abstract][Full Text] [Related]
14. Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer. Silva GO; He X; Parker JS; Gatza ML; Carey LA; Hou JP; Moulder SL; Marcom PK; Ma J; Rosen JM; Perou CM Breast Cancer Res Treat; 2015 Jul; 152(2):347-56. PubMed ID: 26109346 [TBL] [Abstract][Full Text] [Related]
15. A sparse regulatory network of copy-number driven gene expression reveals putative breast cancer oncogenes. Yuan Y; Curtis C; Caldas C; Markowetz F IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):947-54. PubMed ID: 21788678 [TBL] [Abstract][Full Text] [Related]
16. CNV Radar: an improved method for somatic copy number alteration characterization in oncology. Soong D; Stratford J; Avet-Loiseau H; Bahlis N; Davies F; Dispenzieri A; Sasser AK; Schecter JM; Qi M; Brown C; Jones W; Keats JJ; Auclair D; Chiu C; Powers J; Schaffer M BMC Bioinformatics; 2020 Mar; 21(1):98. PubMed ID: 32143562 [TBL] [Abstract][Full Text] [Related]
17. ProcessDriver: A computational pipeline to identify copy number drivers and associated disrupted biological processes in cancer. Baur B; Bozdag S Genomics; 2017 Jul; 109(3-4):233-240. PubMed ID: 28438487 [TBL] [Abstract][Full Text] [Related]
18. Impact of accumulated alterations in driver and passenger genes on response to radiation therapy. Seo Y; Tamari K; Takahashi Y; Minami K; Isohashi F; Suzuki O; Sumida I; Ogawa K Br J Radiol; 2020 May; 93(1109):20190625. PubMed ID: 32031414 [TBL] [Abstract][Full Text] [Related]
19. Breast cancer associated germline structural variants harboring small noncoding RNAs impact post-transcriptional gene regulation. Kumaran M; Krishnan P; Cass CE; Hubaux R; Lam W; Yasui Y; Damaraju S Sci Rep; 2018 May; 8(1):7529. PubMed ID: 29760470 [TBL] [Abstract][Full Text] [Related]
20. DriverFuse: An R package for analysis of next-generation sequencing datasets to identify cancer driver fusion genes. Roy S; Gupta D PLoS One; 2022; 17(2):e0262686. PubMed ID: 35113898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]