These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21806938)

  • 1. Imaging molecular transport across lipid bilayers.
    Li S; Hu PC; Malmstadt N
    Biophys J; 2011 Aug; 101(3):700-8. PubMed ID: 21806938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal imaging to quantify passive transport across biomimetic lipid membranes.
    Li S; Hu P; Malmstadt N
    Anal Chem; 2010 Sep; 82(18):7766-71. PubMed ID: 20722391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative visualization of passive transport across bilayer lipid membranes.
    Grime JM; Edwards MA; Rudd NC; Unwin PR
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14277-82. PubMed ID: 18787114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers.
    Runas KA; Malmstadt N
    Soft Matter; 2015 Jan; 11(3):499-505. PubMed ID: 25415555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Mechanical Properties of Lipid Bilayers on the Entry of Cell-Penetrating Peptides into Single Vesicles.
    Islam MZ; Sharmin S; Levadnyy V; Alam Shibly SU; Yamazaki M
    Langmuir; 2017 Mar; 33(9):2433-2443. PubMed ID: 28166411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating lipid bilayer permeability and structure: Impact of hydrophobic chain length, C-3 hydroxyl group, and double bond in sphingosine.
    Mu Y; Wang Z; Song L; Ma K; Chen Y; Li P; Yan Z
    J Colloid Interface Sci; 2024 Nov; 674():513-526. PubMed ID: 38943912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing a fluorescence-based standard to quantify protein partitioning into membranes.
    Thomas FA; Visco I; Petrášek Z; Heinemann F; Schwille P
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2932-41. PubMed ID: 26342678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies.
    Hasan M; Yamazaki M
    Adv Exp Med Biol; 2019; 1117():17-32. PubMed ID: 30980351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach for the fabrication of microscale lipid bilayers at glass pipets: application to quantitative passive permeation visualization.
    Meadows KE; Nadappuram BP; Unwin PR
    Soft Matter; 2014 Nov; 10(42):8433-41. PubMed ID: 25221789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting.
    Kleinfeld AM; Chu P; Romero C
    Biochemistry; 1997 Nov; 36(46):14146-58. PubMed ID: 9369487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining reflectometry and fluorescence microscopy: an assay for the investigation of leakage processes across lipid membranes.
    Stephan M; Mey I; Steinem C; Janshoff A
    Anal Chem; 2014 Feb; 86(3):1366-71. PubMed ID: 24377291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of acetylcholinesterase in lipid membranes deposited on self-assembled monolayers.
    Milkani E; Khaing AM; Huang F; Gibson DG; Gridley S; Garceau N; Lambert CR; McGimpsey WG
    Langmuir; 2010 Dec; 26(24):18884-92. PubMed ID: 21087026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing suboptical dynamic structures in lipid bilayer patches formed from free-standing giant unilamellar vesicles.
    Bhatia T; Cornelius F; Ipsen JH
    Nat Protoc; 2017 Aug; 12(8):1563-1575. PubMed ID: 28703789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane interaction of α-synuclein in different aggregation states.
    Grey M; Linse S; Nilsson H; Brundin P; Sparr E
    J Parkinsons Dis; 2011; 1(4):359-71. PubMed ID: 23933657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape Transformations of Lipid Bilayers Following Rapid Cholesterol Uptake.
    Rahimi M; Regan D; Arroyo M; Subramaniam AB; Stone HA; Staykova M
    Biophys J; 2016 Dec; 111(12):2651-2657. PubMed ID: 28002741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxyanion transport across lipid bilayers: direct measurements in large and giant unilamellar vesicles.
    Bąk KM; van Kolck B; Maslowska-Jarzyna K; Papadopoulou P; Kros A; Chmielewski MJ
    Chem Commun (Camb); 2020 May; 56(36):4910-4913. PubMed ID: 32238998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elementary processes of antimicrobial peptide PGLa-induced pore formation in lipid bilayers.
    Parvez F; Alam JM; Dohra H; Yamazaki M
    Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2262-2271. PubMed ID: 30409522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biopores/membrane proteins in synthetic polymer membranes.
    Garni M; Thamboo S; Schoenenberger CA; Palivan CG
    Biochim Biophys Acta Biomembr; 2017 Apr; 1859(4):619-638. PubMed ID: 27984019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroformation of giant unilamellar vesicles in saline solution.
    Li Q; Wang X; Ma S; Zhang Y; Han X
    Colloids Surf B Biointerfaces; 2016 Nov; 147():368-375. PubMed ID: 27566225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.