BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21807453)

  • 1. Ligand-induced conformational change of a protein reproduced by a linear combination of displacement vectors obtained from normal mode analysis.
    Wako H; Endo S
    Biophys Chem; 2011 Dec; 159(2-3):257-66. PubMed ID: 21807453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the applicability of elastic network normal modes in small-molecule docking.
    Dietzen M; Zotenko E; Hildebrandt A; Lengauer T
    J Chem Inf Model; 2012 Mar; 52(3):844-56. PubMed ID: 22320151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How different are structurally flexible and rigid binding sites? Sequence and structural features discriminating proteins that do and do not undergo conformational change upon ligand binding.
    Gunasekaran K; Nussinov R
    J Mol Biol; 2007 Jan; 365(1):257-73. PubMed ID: 17059826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ligand binding on the association properties and conformation in solution of retinoic acid receptors RXR and RAR.
    Egea PF; Rochel N; Birck C; Vachette P; Timmins PA; Moras D
    J Mol Biol; 2001 Mar; 307(2):557-76. PubMed ID: 11254382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What is the relationship between the global structures of apo and holo proteins?
    Brylinski M; Skolnick J
    Proteins; 2008 Feb; 70(2):363-77. PubMed ID: 17680687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal modes of vibration in bovine pancreatic trypsin inhibitor and its mechanical property.
    Nishikawa T; Go N
    Proteins; 1987; 2(4):308-29. PubMed ID: 3448606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-ligand docking using mutually orthogonal Latin squares (MOLSDOCK).
    Viji SN; Prasad PA; Gautham N
    J Chem Inf Model; 2009 Dec; 49(12):2687-94. PubMed ID: 19968302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy minimization in low-frequency normal modes to efficiently allow for global flexibility during systematic protein-protein docking.
    May A; Zacharias M
    Proteins; 2008 Feb; 70(3):794-809. PubMed ID: 17729269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational selection in silico: loop latching motions and ligand binding in enzymes.
    Wong S; Jacobson MP
    Proteins; 2008 Apr; 71(1):153-64. PubMed ID: 17932934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-induced conformational change in transferrins: crystal structure of the open form of the N-terminal half-molecule of human transferrin.
    Jeffrey PD; Bewley MC; MacGillivray RT; Mason AB; Woodworth RC; Baker EN
    Biochemistry; 1998 Oct; 37(40):13978-86. PubMed ID: 9760232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions in native binding sites cause a large change in protein dynamics.
    Ming D; Wall ME
    J Mol Biol; 2006 Apr; 358(1):213-23. PubMed ID: 16513135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear response theory in dihedral angle space for protein structural change upon ligand binding.
    Omori S; Fuchigami S; Ikeguchi M; Kidera A
    J Comput Chem; 2009 Dec; 30(16):2602-8. PubMed ID: 19373827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-energy landscapes of protein domain movements upon ligand binding.
    Kondo HX; Okimoto N; Morimoto G; Taiji M
    J Phys Chem B; 2011 Jun; 115(23):7629-36. PubMed ID: 21608983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apo adenylate kinase encodes its holo form: a principal component and varimax analysis.
    Cukier RI
    J Phys Chem B; 2009 Feb; 113(6):1662-72. PubMed ID: 19159290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accounting for loop flexibility during protein-protein docking.
    Bastard K; Prévost C; Zacharias M
    Proteins; 2006 Mar; 62(4):956-69. PubMed ID: 16372349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Zn(II) binding and apoprotein structural stability on the conformation change of designed antennafinger proteins.
    Hori Y; Sugiura Y
    Biochemistry; 2004 Mar; 43(11):3068-74. PubMed ID: 15023058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the structure of human apo-S100B at low temperature indicates a unimodal conformational distribution is adopted by calcium-free S100 proteins.
    Malik S; Revington M; Smith SP; Shaw GS
    Proteins; 2008 Oct; 73(1):28-42. PubMed ID: 18384084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-induced conformational changes in ras p21: a normal mode and energy minimization analysis.
    Ma J; Karplus M
    J Mol Biol; 1997 Nov; 274(1):114-31. PubMed ID: 9398520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.