These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21807559)

  • 1. A new evolutionary and pharmacokinetic-pharmacodynamic scenario for rapid emergence of resistance to single and multiple anti-tuberculosis drugs.
    Pasipanodya JG; Gumbo T
    Curr Opin Pharmacol; 2011 Oct; 11(5):457-63. PubMed ID: 21807559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacokinetic mismatch does not lead to emergence of isoniazid- or rifampin-resistant Mycobacterium tuberculosis but to better antimicrobial effect: a new paradigm for antituberculosis drug scheduling.
    Srivastava S; Sherman C; Meek C; Leff R; Gumbo T
    Antimicrob Agents Chemother; 2011 Nov; 55(11):5085-9. PubMed ID: 21896907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the clinical pharmacology of tuberculosis medications.
    Egelund EF; Alsultan A; Peloquin CA
    Clin Pharmacol Ther; 2015 Oct; 98(4):387-93. PubMed ID: 26138226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic investigation of resistance via drug-inactivating enzymes in Mycobacterium tuberculosis.
    Kashyap A; Singh PK; Silakari O
    Drug Metab Rev; 2018 Nov; 50(4):448-465. PubMed ID: 30343607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the impact of drug combination regimens on TB treatment efficacy and multidrug resistance probability.
    Lin YJ; Liao CM
    J Antimicrob Chemother; 2015 Dec; 70(12):3273-82. PubMed ID: 26311836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Nanotechnological Approaches for an Effective Delivery of Bioactive Drug Molecules to Overcome Drug Resistance Tuberculosis.
    Garg T; Rath G; Murthy RR; Gupta UD; Vatsala PG; Goyal AK
    Curr Pharm Des; 2015; 21(22):3076-89. PubMed ID: 26027577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability.
    Srivastava S; Pasipanodya JG; Meek C; Leff R; Gumbo T
    J Infect Dis; 2011 Dec; 204(12):1951-9. PubMed ID: 22021624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug-Resistant Tuberculosis: Challenges and Progress.
    Kurz SG; Furin JJ; Bark CM
    Infect Dis Clin North Am; 2016 Jun; 30(2):509-522. PubMed ID: 27208770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibiotic resistance mechanisms in M. tuberculosis: an update.
    Nguyen L
    Arch Toxicol; 2016 Jul; 90(7):1585-604. PubMed ID: 27161440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability.
    Gumbo T
    Antimicrob Agents Chemother; 2010 Apr; 54(4):1484-91. PubMed ID: 20086150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk Factors for Multidrug-resistant Tuberculosis.
    Rumende CM
    Acta Med Indones; 2018 Jan; 50(1):1-2. PubMed ID: 29686169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of administering short-course, standardized regimens in individuals infected with drug-resistant Mycobacterium tuberculosis strains.
    Furin JJ; Becerra MC; Shin SS; Kim JY; Bayona J; Farmer PE
    Eur J Clin Microbiol Infect Dis; 2000 Feb; 19(2):132-6. PubMed ID: 10746502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Editorial commentary: pharmacokinetic variability and tuberculosis treatment outcomes, including acquired drug resistance.
    Egelund EF; Peloquin CA
    Clin Infect Dis; 2012 Jul; 55(2):178-9. PubMed ID: 22467672
    [No Abstract]   [Full Text] [Related]  

  • 14. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy.
    Pasipanodya JG; Srivastava S; Gumbo T
    Clin Infect Dis; 2012 Jul; 55(2):169-77. PubMed ID: 22467670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs.
    Gupta AK; Katoch VM; Chauhan DS; Sharma R; Singh M; Venkatesan K; Sharma VD
    Microb Drug Resist; 2010 Mar; 16(1):21-8. PubMed ID: 20001742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of drug resistance in Mycobacterium tuberculosis.
    Zhang Y; Yew WW
    Int J Tuberc Lung Dis; 2009 Nov; 13(11):1320-30. PubMed ID: 19861002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluoroquinolones, the cornerstone of treatment of drug-resistant tuberculosis: a pharmacokinetic and pharmacodynamic approach.
    Pranger AD; Alffenaar JW; Aarnoutse RE
    Curr Pharm Des; 2011; 17(27):2900-30. PubMed ID: 21834759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dried blood spot analysis combined with limited sampling models can advance therapeutic drug monitoring of tuberculosis drugs.
    Alffenaar JW
    J Infect Dis; 2012 Jun; 205(11):1765-6; author reply 1766. PubMed ID: 22459734
    [No Abstract]   [Full Text] [Related]  

  • 19. [Extensively drug resistant and extremely drug resistant tuberculosis forms after multi-drug resistant tuberculosis: new faces of the old disease].
    Baylan O
    Mikrobiyol Bul; 2011 Jan; 45(1):181-95. PubMed ID: 21341173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Five-year microevolution of a multidrug-resistant Mycobacterium tuberculosis strain within a patient with inadequate compliance to treatment.
    Fernandez Do Porto DA; Monteserin J; Campos J; Sosa EJ; Matteo M; Serral F; Yokobori N; Benevento AF; Poklepovich T; Pardo A; Wainmayer I; Simboli N; Castello F; Paul R; Martí M; López B; Turjanski A; Ritacco V
    BMC Infect Dis; 2021 Apr; 21(1):394. PubMed ID: 33926375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.