These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21807720)

  • 1. Characterization of the tunable response of highly strained compliant optical metamaterials.
    Pryce IM; Aydin K; Kelaita YA; Briggs RM; Atwater HA
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3447-55. PubMed ID: 21807720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly strained compliant optical metamaterials with large frequency tunability.
    Pryce IM; Aydin K; Kelaita YA; Briggs RM; Atwater HA
    Nano Lett; 2010 Oct; 10(10):4222-7. PubMed ID: 20857941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing.
    Pryce IM; Kelaita YA; Aydin K; Atwater HA
    ACS Nano; 2011 Oct; 5(10):8167-74. PubMed ID: 21928788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.
    Han NR; Chen ZC; Lim CS; Ng B; Hong MH
    Opt Express; 2011 Apr; 19(8):6990-8. PubMed ID: 21503013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetry breaking and strong coupling in planar optical metamaterials.
    Aydin K; Pryce IM; Atwater HA
    Opt Express; 2010 Jun; 18(13):13407-17. PubMed ID: 20588471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency tunable near-infrared metamaterials based on VO2 phase transition.
    Dicken MJ; Aydin K; Pryce IM; Sweatlock LA; Boyd EM; Walavalkar S; Ma J; Atwater HA
    Opt Express; 2009 Sep; 17(20):18330-9. PubMed ID: 19907624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic molecules with a tunable inter-cavity gap.
    Siegle T; Schierle S; Kraemmer S; Richter B; Wondimu SF; Schuch P; Koos C; Kalt H
    Light Sci Appl; 2017 Mar; 6(3):e16224. PubMed ID: 30167234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates.
    Singh R; Azad AK; Jia QX; Taylor AJ; Chen HT
    Opt Lett; 2011 Apr; 36(7):1230-2. PubMed ID: 21479039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Shunt Resonators-Based Piezoelectric Metamaterial for Elastic Wave Attenuation.
    Xu J; Lu H; Qin W; Wang P; Bian J
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces.
    Liu Z; Huang CY; Liu H; Zhang X; Lee C
    Opt Express; 2013 Mar; 21(5):6519-25. PubMed ID: 23482222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties.
    Prinz VY; Naumova EV; Golod SV; Seleznev VA; Bocharov AA; Kubarev VV
    Sci Rep; 2017 Mar; 7():43334. PubMed ID: 28256587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials.
    Alaeian H; Dionne JA
    Opt Express; 2012 Jul; 20(14):15781-96. PubMed ID: 22772268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Configurable metamaterial absorber with pseudo wideband spectrum.
    Zhu W; Huang Y; Rukhlenko ID; Wen G; Premaratne M
    Opt Express; 2012 Mar; 20(6):6616-21. PubMed ID: 22418545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional resonating metamaterials for low-frequency vibration attenuation.
    Elmadih W; Chronopoulos D; Syam WP; Maskery I; Meng H; Leach RK
    Sci Rep; 2019 Aug; 9(1):11503. PubMed ID: 31395897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials.
    Ma C; Chang Y; Wu S; Zhao RR
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35833606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double negative elastic metamaterial design through electrical-mechanical circuit analogies.
    Pope SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1467-74. PubMed ID: 25004513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy.
    Bukasov R; Shumaker-Parry JS
    Anal Chem; 2009 Jun; 81(11):4531-5. PubMed ID: 19408957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled metamaterial optical resonators for infrared emissivity spectrum modulation.
    Morsy AM; Povinelli ML
    Opt Express; 2021 Feb; 29(4):5840-5847. PubMed ID: 33726116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact electric-LC resonators for metamaterials.
    Withayachumnankul W; Fumeaux C; Abbott D
    Opt Express; 2010 Dec; 18(25):25912-21. PubMed ID: 21164937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.