These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21808305)

  • 1. Complementary bowtie aperture for localizing and enhancing optical magnetic field.
    Zhou N; Kinzel EC; Xu X
    Opt Lett; 2011 Aug; 36(15):2764-6. PubMed ID: 21808305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording.
    Zhou N; Kinzel EC; Xu X
    Appl Opt; 2011 Nov; 50(31):G42-6. PubMed ID: 22086046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diabolo nanoantenna for enhancing and confining the magnetic optical field.
    Grosjean T; Mivelle M; Baida FI; Burr GW; Fischer UC
    Nano Lett; 2011 Mar; 11(3):1009-13. PubMed ID: 21319837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional mapping of optical near field of a nanoscale bowtie antenna.
    Guo R; Kinzel EC; Li Y; Uppuluri SM; Raman A; Xu X
    Opt Express; 2010 Mar; 18(5):4961-71. PubMed ID: 20389507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Split ring aperture for optical magnetic field enhancement by radially polarized beam.
    Yang Y; Dai HT; Sun XW
    Opt Express; 2013 Mar; 21(6):6845-50. PubMed ID: 23546066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneously tuning the electric and magnetic plasmonic response using capped bi-metallic nanoantennas.
    Roxworthy BJ; Toussaint KC
    Nanoscale; 2014 Feb; 6(4):2270-4. PubMed ID: 24407278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots.
    Chen Y; Chen J; Xu X; Chu J
    Opt Express; 2015 Apr; 23(7):9093-9. PubMed ID: 25968743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bowtie nano-aperture as interface between near-fields and a single-mode fiber.
    Mivelle M; Ibrahim IA; Baida F; Burr GW; Nedeljkovic D; Charraut D; Rauch JY; Salut R; Grosjean T
    Opt Express; 2010 Jul; 18(15):15964-74. PubMed ID: 20720980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge and current reservoirs for electric and magnetic field enhancement.
    Wang D; Yang T; Crozier KB
    Opt Express; 2010 May; 18(10):10388-94. PubMed ID: 20588894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale.
    Mivelle M; Viktorovitch P; Baida FI; El Eter A; Xie Z; Vo TP; Atie E; Burr GW; Nedeljkovic D; Rauch JY; Callard S; Grosjean T
    Opt Express; 2014 Jun; 22(12):15075-87. PubMed ID: 24977600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct near-field optical imaging of UV bowtie nanoantennas.
    Zhou L; Gan Q; Bartoli FJ; Dierolf V
    Opt Express; 2009 Oct; 17(22):20301-6. PubMed ID: 19997256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz near-field microscopy of complementary planar metamaterials: Babinet's principle.
    Bitzer A; Ortner A; Merbold H; Feurer T; Walther M
    Opt Express; 2011 Jan; 19(3):2537-45. PubMed ID: 21369073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-field spectroscopic properties of complementary gold nanostructures: applicability of Babinet's principle in the optical region.
    Mizobata H; Ueno K; Misawa H; Okamoto H; Imura K
    Opt Express; 2017 Mar; 25(5):5279-5289. PubMed ID: 28380791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large enhancement and uniform distribution of optical near field through combining periodic bowtie nanoantenna with rectangular nanoaperture array.
    Li J; Chen S; Yu P; Cheng H; Zhou W; Tian J
    Opt Lett; 2011 Oct; 36(20):4014-6. PubMed ID: 22002370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture.
    Murphy-DuBay N; Wang L; Kinzel EC; Uppuluri SM; Xu X
    Opt Express; 2008 Feb; 16(4):2584-9. PubMed ID: 18542340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic antenna effects on photochemical reactions.
    Gao S; Ueno K; Misawa H
    Acc Chem Res; 2011 Apr; 44(4):251-60. PubMed ID: 21381706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditions for stronger field enhancement of semiconductor bowtie nanoantennas.
    Uemoto M; Ajiki H
    Opt Lett; 2015 Apr; 40(8):1695-8. PubMed ID: 25872050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near- and far-field study of polarization-dependent surface plasmon resonance in bowtie nano-aperture arrays.
    Choi S; Park J; Chew SH; Khurelbaatar T; Gliserin A; Kim S; Kim DE
    Opt Express; 2023 Sep; 31(20):31760-31767. PubMed ID: 37858993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the optical properties of bowtie antenna generated by self-assembled ag triangular nanoprisms.
    Rosen DA; Tao AR
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4134-42. PubMed ID: 24533909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraordinary infrared transmission through a periodic bowtie aperture array.
    Kinzel EC; Xu X
    Opt Lett; 2010 Apr; 35(7):992-4. PubMed ID: 20364194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.