These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21808305)

  • 21. High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics.
    Rao Z; Hesselink L; Harris JS
    Opt Lett; 2007 Jul; 32(14):1995-7. PubMed ID: 17632621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling of surface waves on a THz antenna detected by a near-field probe.
    Natrella M; Mitrofanov O; Mueckstein R; Graham C; Renaud CC; Seeds AJ
    Opt Express; 2012 Jul; 20(14):16023-31. PubMed ID: 22772292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resolution enhancing using cantilevered tip-on-aperture silicon probe in scanning near-field optical microscopy.
    Chang WS; Bauerdick S; Jeong MS
    Ultramicroscopy; 2008 Sep; 108(10):1070-5. PubMed ID: 18579310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared.
    Venuthurumilli PK; Ye PD; Xu X
    ACS Nano; 2018 May; 12(5):4861-4867. PubMed ID: 29684270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bowtie plasmonic quantum cascade laser antenna.
    Yu N; Cubukcu E; Diehl L; Bour D; Corzine S; Zhu J; Höfler G; Crozier KB; Capasso F
    Opt Express; 2007 Oct; 15(20):13272-81. PubMed ID: 19550597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field.
    Wen X; Datta A; Traverso LM; Pan L; Xu X; Moon EE
    Sci Rep; 2015 Nov; 5():16192. PubMed ID: 26525906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boosted photocatalytic efficiency through plasmonic field confinement with bowtie and diabolo nanostructures under LED irradiation.
    Lee CH; Liao SC; Lin TR; Wang SH; Lai DY; Chiu PK; Lee JW; Wu WF
    Opt Express; 2016 Aug; 24(16):17541-52. PubMed ID: 27505725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna.
    Sederberg S; Elezzabi AY
    Opt Express; 2011 May; 19(11):10456-61. PubMed ID: 21643300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reciprocity and Babinet's principles applied to the enhancement of the electric and magnetic local density of states in integrated plasmonics on silicon photonics.
    Meza-Olivo AA; Garay-Palmett K; Blaize S; Salas-Montiel R
    Appl Opt; 2018 Oct; 57(30):9155-9163. PubMed ID: 30461905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonant Effects in Nanoscale Bowtie Apertures.
    Ding L; Qin J; Guo S; Liu T; Kinzel E; Wang L
    Sci Rep; 2016 Jun; 6():27254. PubMed ID: 27250995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing and controlling photothermal heat generation in plasmonic nanostructures.
    Coppens ZJ; Li W; Walker DG; Valentine JG
    Nano Lett; 2013 Mar; 13(3):1023-8. PubMed ID: 23437919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-numerical-aperture image simulation using Babinet's principle.
    Yang SH; Milster T; Park JR; Zhang J
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):1012-23. PubMed ID: 20448767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybridized plasmonic modes and Fabry-Perot effect in nanoscale bowtie aperture waveguide.
    Zhang L; Qin J; Guo S; Wang L
    Opt Express; 2019 Jun; 27(12):17221-17227. PubMed ID: 31252935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding near/far-field engineering of optical dimer antennas through geometry modification.
    Ding W; Bachelot R; Espiau de Lamaestre R; Macias D; Baudrion AL; Royer P
    Opt Express; 2009 Nov; 17(23):21228-39. PubMed ID: 19997362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of three-dimensional field distribution of bowtie aperture using quasi-spherical waves and surface plasmon polaritons.
    Park C; Jung H; Hahn JW
    Sci Rep; 2017 Mar; 7():45352. PubMed ID: 28358013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical Manipulation of nanoparticles by simultaneous electric and magnetic field enhancement within diabolo nanoantenna.
    Hameed N; Nouho Ali A; Baida FI
    Sci Rep; 2017 Oct; 7(1):12806. PubMed ID: 28993675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Limits of Babinet's principle for solid and hollow plasmonic antennas.
    Horák M; Křápek V; Hrtoň M; Konečná A; Ligmajer F; Stöger-Pollach M; Šamořil T; Paták A; Édes Z; Metelka O; Babocký J; Šikola T
    Sci Rep; 2019 Mar; 9(1):4004. PubMed ID: 30850673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface plasmon propagation enhancement via bowtie antenna incorporation in Au-mica block waveguides.
    Pita IA; Kumbham M; Schmidt M; Gleeson M; Ryan KM; Silien C; Liu N
    Appl Opt; 2018 Aug; 57(22):E50-E56. PubMed ID: 30117921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beaming Visible Light with a Plasmonic Aperture Antenna.
    Yi JM; Cuche A; Devaux E; Genet C; Ebbesen TW
    ACS Photonics; 2014 Apr; 1(4):365-370. PubMed ID: 25540811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.