BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21808311)

  • 1. High-speed two-frame shadowgraphy for velocity measurements of laser-induced plasma and shock-wave evolution.
    Gregorčič P; Možina J
    Opt Lett; 2011 Aug; 36(15):2782-4. PubMed ID: 21808311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses.
    Vogel A; Busch S; Jungnickel K; Birngruber R
    Lasers Surg Med; 1994; 15(1):32-43. PubMed ID: 7997046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study of different pulse delays on the phenomenon of double shock waves induced by a millisecond-nanosecond combined-pulse laser.
    Li JY; Zhang W; Guo LP; Zhang XY; Yuan BS; Guo M; Jin GY
    Appl Opt; 2020 Aug; 59(24):7338-7342. PubMed ID: 32902500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved imaging of laser-induced refractive index changes in transparent media.
    Mermillod-Blondin A; Mauclair C; Bonse J; Stoian R; Audouard E; Rosenfeld A; Hertel IV
    Rev Sci Instrum; 2011 Mar; 82(3):033703. PubMed ID: 21456747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cranz-Schardin camera with a large working distance for the observation of small scale high-speed flows.
    Skupsch C; Chaves H; Brücker C
    Rev Sci Instrum; 2011 Aug; 82(8):083705. PubMed ID: 21895249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea.
    Bor Z; Hopp B; Rácz B; Szabó G; Ratkay I; Süveges I; Füst A; Mohay J
    Refract Corneal Surg; 1993; 9(2 Suppl):S111-5. PubMed ID: 8499358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved visualization of high-repetition ultrashort pulse laser ablation.
    Kraft S; Schille J; Mauersberger S; Schneider L; Loeschner U
    Appl Opt; 2020 Jan; 59(2):452-458. PubMed ID: 32225330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed camera imaging for laser ablation process: for further reliable elemental analysis using inductively coupled plasma-mass spectrometry.
    Hirata T; Miyazaki Z
    Anal Chem; 2007 Jan; 79(1):147-52. PubMed ID: 17194132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study of the air plasma expansion dynamics by fluorescence method].
    Wang JX; Gao X; Li Q; Zheng YN; Lin JQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2472-5. PubMed ID: 25532347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-shot optical imaging with spectrum circuit bridging timescales in high-speed photography.
    Saiki T; Shimada K; Ishijima A; Song H; Qi X; Okamoto Y; Mizushima A; Mita Y; Hosobata T; Takeda M; Morita S; Kushibiki K; Ozaki S; Motohara K; Yamagata Y; Tsukamoto A; Kannari F; Sakuma I; Inada Y; Nakagawa K
    Sci Adv; 2023 Dec; 9(51):eadj8608. PubMed ID: 38117881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Plasma formation in Nd:YAG laser surgery].
    Jungnickel K; Rein S; Vogel A
    Ophthalmologe; 1992 Aug; 89(4):283-7. PubMed ID: 1304200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Intrastromal refractive corneal surgery with pico-second Nd:YAG laser pulses].
    Vogel A; Asiyo-Vogel M; Birngruber R
    Ophthalmologe; 1994 Oct; 91(5):655-62. PubMed ID: 7812100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-high-precision time control system over any long time delay for laser pump and synchrotron x-ray probe experiment.
    Fukuyama Y; Yasuda N; Kim J; Murayama H; Ohshima T; Tanaka Y; Kimura S; Kamioka H; Moritomo Y; Toriumi K; Tanaka H; Kato K; Ishikawa T; Takata M
    Rev Sci Instrum; 2008 Apr; 79(4):045107. PubMed ID: 18447552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-magnification shadowgraphy for the study of drop breakup in a high-speed gas flow.
    Biasiori-Poulanges L; El-Rabii H
    Opt Lett; 2019 Dec; 44(23):5884-5887. PubMed ID: 31774804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanosecond resolution photography system for laser-induced cavitation based on PIV dual-head laser and industrial camera.
    Han D; Yuan R; Jiang X; Geng S; Zhong Q; Zhang Y; Yao Z; Wang F
    Ultrason Sonochem; 2021 Oct; 78():105733. PubMed ID: 34536700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved imaging of the plume dynamics in infrared matrix-assisted laser desorption/ionization with a glycerol matrix.
    Leisner A; Rohlfing A; Röhling U; Dreisewerd K; Hillenkamp F
    J Phys Chem B; 2005 Jun; 109(23):11661-6. PubMed ID: 16852431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial mapping of droplet velocity and size for direct and indirect nebulization in plasma spectrometry.
    Kahen K; Jorabchi K; Gray C; Montaser A
    Anal Chem; 2004 Dec; 76(24):7194-201. PubMed ID: 15595860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-frame interferometric imaging with a femtosecond stroboscopic pulse train for observing irreversible phenomena.
    Martynowych D; Veysset D; Maznev AA; Sun Y; Kooi SE; Nelson KA
    Rev Sci Instrum; 2020 Mar; 91(3):033711. PubMed ID: 32259926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-high-speed phase-sensitive optical coherence reflectometer with a stretched pulse supercontinuum source.
    Song H; Cho SB; Kim DU; Jeong S; Kim DY
    Appl Opt; 2011 Jul; 50(21):4000-4. PubMed ID: 21772383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensity correlation measurement system by picosecond single shot soft x-ray laser.
    Kishimoto M; Namikawa K; Sukegawa K; Yamatani H; Hasegawa N; Tanaka M
    Rev Sci Instrum; 2010 Jan; 81(1):013905. PubMed ID: 20113111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.