These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase. Nakai H; Petersen BO; Westphal Y; Dilokpimol A; Abou Hachem M; Duus JØ; Schols HA; Svensson B Protein Eng Des Sel; 2010 Oct; 23(10):781-7. PubMed ID: 20713411 [TBL] [Abstract][Full Text] [Related]
4. Reaction mechanism of chitobiose phosphorylase from Vibrio proteolyticus: identification of family 36 glycosyltransferase in Vibrio. Honda Y; Kitaoka M; Hayashi K Biochem J; 2004 Jan; 377(Pt 1):225-32. PubMed ID: 13678418 [TBL] [Abstract][Full Text] [Related]
5. Characterization of three beta-galactoside phosphorylases from Clostridium phytofermentans: discovery of d-galactosyl-beta1->4-l-rhamnose phosphorylase. Nakajima M; Nishimoto M; Kitaoka M J Biol Chem; 2009 Jul; 284(29):19220-7. PubMed ID: 19491100 [TBL] [Abstract][Full Text] [Related]
6. A novel trehalase from Mycobacterium smegmatis - purification, properties, requirements. Carroll JD; Pastuszak I; Edavana VK; Pan YT; Elbein AD FEBS J; 2007 Apr; 274(7):1701-14. PubMed ID: 17319935 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-D-glucosyl disaccharides. Nihira T; Saito Y; Kitaoka M; Nishimoto M; Otsubo K; Nakai H Carbohydr Res; 2012 Nov; 361():49-54. PubMed ID: 22982171 [TBL] [Abstract][Full Text] [Related]
9. Structural and mutational analysis of substrate recognition in kojibiose phosphorylase. Okada S; Yamamoto T; Watanabe H; Nishimoto T; Chaen H; Fukuda S; Wakagi T; Fushinobu S FEBS J; 2014 Feb; 281(3):778-86. PubMed ID: 24255995 [TBL] [Abstract][Full Text] [Related]
10. The first alpha-1,3-glucosidase from bacterial origin belonging to glycoside hydrolase family 31. Kang MS; Okuyama M; Mori H; Kimura A Biochimie; 2009; 91(11-12):1434-42. PubMed ID: 19683032 [TBL] [Abstract][Full Text] [Related]
11. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539 [TBL] [Abstract][Full Text] [Related]
12. Discovery of cellobionic acid phosphorylase in cellulolytic bacteria and fungi. Nihira T; Saito Y; Nishimoto M; Kitaoka M; Igarashi K; Ohtsubo K; Nakai H FEBS Lett; 2013 Nov; 587(21):3556-61. PubMed ID: 24055472 [TBL] [Abstract][Full Text] [Related]
13. Characterization of β-galactoside phosphorylases with diverging acceptor specificities. Chen C; Soetaert W; Desmet T Enzyme Microb Technol; 2011 Jun; 49(1):59-65. PubMed ID: 22112272 [TBL] [Abstract][Full Text] [Related]
14. Kinetic studies of a recombinant cellobiose phosphorylase (CBP) of the Clostridium thermocellum YM4 strain expressed in Escherichia coli. Kim YK; Kitaoka M; Krishnareddy M; Mori Y; Hayashi K J Biochem; 2002 Aug; 132(2):197-203. PubMed ID: 12153715 [TBL] [Abstract][Full Text] [Related]
15. Identification of Bacillus selenitireducens MLS10 maltose phosphorylase possessing synthetic ability for branched α-D-glucosyl trisaccharides. Nihira T; Saito Y; Kitaoka M; Otsubo K; Nakai H Carbohydr Res; 2012 Oct; 360():25-30. PubMed ID: 22940176 [TBL] [Abstract][Full Text] [Related]
16. An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan- and cyclodextrin-degrading activities. Li X; Li D; Park KH Appl Microbiol Biotechnol; 2013 Jun; 97(12):5359-69. PubMed ID: 23001056 [TBL] [Abstract][Full Text] [Related]
17. Discovery of a Kojibiose Hydrolase by Analysis of Specificity-Determining Correlated Positions in Glycoside Hydrolase Family 65. De Beul E; Jongbloet A; Franceus J; Desmet T Molecules; 2021 Oct; 26(20):. PubMed ID: 34684901 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate. Taguchi Y; Saburi W; Imai R; Mori H Biosci Biotechnol Biochem; 2017 Aug; 81(8):1512-1519. PubMed ID: 28537141 [TBL] [Abstract][Full Text] [Related]
19. Discovery of two β-1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp. X-514. Chiku K; Nihira T; Suzuki E; Nishimoto M; Kitaoka M; Ohtsubo K; Nakai H PLoS One; 2014; 9(12):e114882. PubMed ID: 25500577 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of the rare disaccharide nigerose by structure-based design of a phosphorylase mutant with altered regioselectivity. Kraus M; Görl J; Timm M; Seibel J Chem Commun (Camb); 2016 Mar; 52(25):4625-7. PubMed ID: 26878207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]