These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21808975)

  • 1. Glycogen with short average chain length enhances bacterial durability.
    Wang L; Wise MJ
    Naturwissenschaften; 2011 Sep; 98(9):719-29. PubMed ID: 21808975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in the structure of glycogen serving as a durable energy reserve in bacteria.
    Wang L; Wang M; Wise MJ; Liu Q; Yang T; Zhu Z; Li C; Tan X; Tang D; Wang W
    World J Microbiol Biotechnol; 2020 Jan; 36(1):14. PubMed ID: 31897771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycogen, a major player for bacterial survival and awakening from dormancy.
    Klotz A; Forchhammer K
    Future Microbiol; 2017 Feb; 12():101-104. PubMed ID: 28106464
    [No Abstract]   [Full Text] [Related]  

  • 4. Influence of in situ progressive N-terminal is still controversial truncation of glycogen branching enzyme in Escherichia coli DH5α on glycogen structure, accumulation, and bacterial viability.
    Wang L; Regina A; Butardo VM; Kosar-Hashemi B; Larroque O; Kahler CM; Wise MJ
    BMC Microbiol; 2015 May; 15():96. PubMed ID: 25947105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of glycogen metabolism in yeast and bacteria.
    Wilson WA; Roach PJ; Montero M; Baroja-Fernández E; Muñoz FJ; Eydallin G; Viale AM; Pozueta-Romero J
    FEMS Microbiol Rev; 2010 Nov; 34(6):952-85. PubMed ID: 20412306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Evolution of Glycogen Branching Enzyme N-Termini From Bacteria.
    Wang L; Liu Q; Hu J; Asenso J; Wise MJ; Wu X; Ma C; Chen X; Yang J; Tang D
    Front Microbiol; 2018; 9():3354. PubMed ID: 30692986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycogen metabolism in aerobic mixed cultures.
    Dircks K; Beun JJ; van Loosdrecht M; Heijnen JJ; Henze M
    Biotechnol Bioeng; 2001 Apr; 73(2):85-94. PubMed ID: 11255156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial Glycogen Provides Short-Term Benefits in Changing Environments.
    Sekar K; Linker SM; Nguyen J; Grünhagen A; Stocker R; Sauer U
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32111592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected and widespread connections between bacterial glycogen and trehalose metabolism.
    Chandra G; Chater KF; Bornemann S
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1565-1572. PubMed ID: 21474533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digestion kinetics of low, intermediate and highly branched maltodextrins produced from gelatinized starches with various microbial glycogen branching enzymes.
    Zhang X; Leemhuis H; van der Maarel MJEC
    Carbohydr Polym; 2020 Nov; 247():116729. PubMed ID: 32829851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role and regulation of energy reserve polymers in micro-organisms.
    Dawes EA; Senior PJ
    Adv Microb Physiol; 1973; 10():135-266. PubMed ID: 4594739
    [No Abstract]   [Full Text] [Related]  

  • 12. Structure and solution properties of enzymatically synthesized glycogen.
    Kajiura H; Takata H; Kuriki T; Kitamura S
    Carbohydr Res; 2010 Apr; 345(6):817-24. PubMed ID: 20153852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evaluation of decrease in the activities of polyphosphate/glycogen-accumulating organisms due to cell death and activity decay in activated sludge.
    Hao X; Wang Q; Cao Y; van Loosdrecht MC
    Biotechnol Bioeng; 2010 Jun; 106(3):399-407. PubMed ID: 20178124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae.
    Silljé HH; Paalman JW; ter Schure EG; Olsthoorn SQ; Verkleij AJ; Boonstra J; Verrips CT
    J Bacteriol; 1999 Jan; 181(2):396-400. PubMed ID: 9882651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyphosphate- and glycogen-accumulating organisms in one EBPR system for liquid dairy manure.
    Liu ZH; Pruden A; Ogejo JA; Knowlton KF
    Water Environ Res; 2014 Jul; 86(7):663-71. PubMed ID: 25112034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycogen as a carbohydrate energy reserve in trophozoites of Giardia lamblia.
    Ladeira RB; Freitas MA; Silva EF; Gontijo NF; Gomes MA
    Parasitol Res; 2005 Aug; 96(6):418-21. PubMed ID: 15940524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Community structure evolution and enrichment of glycogen-accumulating organisms producing polyhydroxyalkanoates from fermented molasses.
    Pisco AR; Bengtsson S; Werker A; Reis MA; Lemos PC
    Appl Environ Microbiol; 2009 Jul; 75(14):4676-86. PubMed ID: 19465533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The priming of storage glucan synthesis from bacteria to plants: current knowledge and new developments.
    D'Hulst C; Mérida A
    New Phytol; 2010 Oct; 188(1):13-21. PubMed ID: 20618917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?
    Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z
    Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Enriched experiment and endogenous processes of glycogen-accumulating organisms (GAOs)].
    Wang QL; Hao XD; Cao YL
    Huan Jing Ke Xue; 2011 Apr; 32(4):1034-41. PubMed ID: 21717744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.