BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 21808990)

  • 21. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled Evaluation of the Impacts of Surface Coatings on Silver Nanoparticle Dissolution Rates.
    Liu C; Leng W; Vikesland PJ
    Environ Sci Technol; 2018 Mar; 52(5):2726-2734. PubMed ID: 29381855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence enhancement of silver nanoparticle hybrid probes and ultrasensitive detection of IgE.
    Li H; Qiang W; Vuki M; Xu D; Chen HY
    Anal Chem; 2011 Dec; 83(23):8945-52. PubMed ID: 21988285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitatively profiling the dissolution and redistribution of silver nanoparticles in living rats using a knotted reactor-based differentiation scheme.
    Su CK; Liu HT; Hsia SC; Sun YC
    Anal Chem; 2014 Aug; 86(16):8267-74. PubMed ID: 25025651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles.
    Chambers BA; Afrooz AR; Bae S; Aich N; Katz L; Saleh NB; Kirisits MJ
    Environ Sci Technol; 2014; 48(1):761-9. PubMed ID: 24328237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV-Vis.
    Sikder M; Lead JR; Chandler GT; Baalousha M
    Sci Total Environ; 2018 Mar; 618():597-607. PubMed ID: 28411867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of total silver and silver nanoparticle extraction from medical devices.
    Sussman EM; Jayanti P; Dair BJ; Casey BJ
    Food Chem Toxicol; 2015 Nov; 85():10-9. PubMed ID: 26282371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of silver nanoparticle aggregates using single particle-inductively coupled plasma-mass spectrometry (spICP-MS).
    Kim HA; Lee BT; Na SY; Kim KW; Ranville JF; Kim SO; Jo E; Eom IC
    Chemosphere; 2017 Mar; 171():468-475. PubMed ID: 28039830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles.
    Stoiber T; Croteau MN; Römer I; Tejamaya M; Lead JR; Luoma SN
    Nanotoxicology; 2015; 9(7):918-27. PubMed ID: 25676617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differentiation and characterization of isotopically modified silver nanoparticles in aqueous media using asymmetric-flow field flow fractionation coupled to optical detection and mass spectrometry.
    Gigault J; Hackley VA
    Anal Chim Acta; 2013 Feb; 763():57-66. PubMed ID: 23340287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silver nanoparticle behaviour in lake water depends on their surface coating.
    Jiménez-Lamana J; Slaveykova VI
    Sci Total Environ; 2016 Dec; 573():946-953. PubMed ID: 27599058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of ammonia on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea.
    Kostigen Mumper C; Ostermeyer AK; Semprini L; Radniecki TS
    Chemosphere; 2013 Nov; 93(10):2493-8. PubMed ID: 24120011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantification of silver nanoparticle interactions with yeast Saccharomyces cerevisiae studied using single-cell ICP-MS.
    Rasmussen L; Shi H; Liu W; Shannon KB
    Anal Bioanal Chem; 2022 Apr; 414(9):3077-3086. PubMed ID: 35122141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions.
    MacCuspie RI; Rogers K; Patra M; Suo Z; Allen AJ; Martin MN; Hackley VA
    J Environ Monit; 2011 May; 13(5):1212-26. PubMed ID: 21416095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Translocation of silver nanoparticles in the ex vivo human placenta perfusion model characterized by single particle ICP-MS.
    Vidmar J; Loeschner K; Correia M; Larsen EH; Manser P; Wichser A; Boodhia K; Al-Ahmady ZS; Ruiz J; Astruc D; Buerki-Thurnherr T
    Nanoscale; 2018 Jul; 10(25):11980-11991. PubMed ID: 29904776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos.
    Groh KJ; Dalkvist T; Piccapietra F; Behra R; Suter MJ; Schirmer K
    Nanotoxicology; 2015 Feb; 9(1):81-91. PubMed ID: 24625062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection.
    Loeschner K; Navratilova J; Grombe R; Linsinger TP; Købler C; Mølhave K; Larsen EH
    Food Chem; 2015 Aug; 181():78-84. PubMed ID: 25794724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry.
    Jiang C; Hsu-Kim H
    Environ Sci Process Impacts; 2014 Nov; 16(11):2536-44. PubMed ID: 25220562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.
    Loeschner K; Navratilova J; Legros S; Wagner S; Grombe R; Snell J; von der Kammer F; Larsen EH
    J Chromatogr A; 2013 Jan; 1272():116-25. PubMed ID: 23261297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater.
    Cervantes-Avilés P; Huang Y; Keller AA
    Water Res; 2019 Dec; 166():115072. PubMed ID: 31525511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.