BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 21808990)

  • 41. Ionic-strength-dependent effect of suspended sediment on the aggregation, dissolution and settling of silver nanoparticles.
    Zhao J; Li Y; Wang X; Xia X; Shang E; Ali J
    Environ Pollut; 2021 Jun; 279():116926. PubMed ID: 33751945
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Partitioning of nanoparticle-originated dissolved silver in natural and artificial sediments.
    Rajala JE; Vehniäinen ER; Väisänen A; Kukkonen JVK
    Environ Toxicol Chem; 2017 Oct; 36(10):2593-2601. PubMed ID: 28304113
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Size and mass determination of silver nanoparticles in an aqueous matrix using asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometer and ultraviolet-visible detectors.
    Geiss O; Cascio C; Gilliland D; Franchini F; Barrero-Moreno J
    J Chromatogr A; 2013 Dec; 1321():100-8. PubMed ID: 24238704
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea.
    Ostermeyer AK; Kostigen Mumuper C; Semprini L; Radniecki T
    Environ Sci Technol; 2013 Dec; 47(24):14403-10. PubMed ID: 24219026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uptake kinetics of silver nanoparticles by plant: relative importance of particles and dissolved ions.
    Dang F; Wang Q; Cai W; Zhou D; Xing B
    Nanotoxicology; 2020 Jun; 14(5):654-666. PubMed ID: 32141361
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Organelles and chromatin fragmentation of human umbilical vein endothelial cell influence by the effects of zeta potential and size of silver nanoparticles in different manners.
    Tavakol S; Hoveizi E; Kharrazi S; Tavakol B; Karimi S; Rezayat Sorkhabadi SM
    Artif Cells Nanomed Biotechnol; 2017 Jun; 45(4):817-823. PubMed ID: 27160016
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation.
    Zook JM; Rastogi V; Maccuspie RI; Keene AM; Fagan J
    ACS Nano; 2011 Oct; 5(10):8070-9. PubMed ID: 21888410
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The importance of evaluating the real metal concentration in nanoparticles post-synthesis for their applications: A case-study using silver nanoparticles.
    Galazzi RM; Santos Ede B; Caurin T; Pessôa Gde S; Mazali IO; Arruda MA
    Talanta; 2016 Jan; 146():795-800. PubMed ID: 26695332
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Toward full spectrum speciation of silver nanoparticles and ionic silver by on-line coupling of hollow fiber flow field-flow fractionation and minicolumn concentration with multiple detectors.
    Tan ZQ; Liu JF; Guo XR; Yin YG; Byeon SK; Moon MH; Jiang GB
    Anal Chem; 2015 Aug; 87(16):8441-7. PubMed ID: 26222150
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lung retention and particokinetics of silver and gold nanoparticles in rats following subacute inhalation co-exposure.
    Kim JK; Kim HP; Park JD; Ahn K; Kim WY; Gulumian M; Oberdörster G; Yu IJ
    Part Fibre Toxicol; 2021 Jan; 18(1):5. PubMed ID: 33478543
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extraction Method Development for Quantitative Detection of Silver Nanoparticles in Environmental Soils and Sediments by Single Particle Inductively Coupled Plasma Mass Spectrometry.
    Li L; Wang Q; Yang Y; Luo L; Ding R; Yang ZG; Li HP
    Anal Chem; 2019 Aug; 91(15):9442-9450. PubMed ID: 31248253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters.
    Chinnapongse SL; MacCuspie RI; Hackley VA
    Sci Total Environ; 2011 May; 409(12):2443-50. PubMed ID: 21481439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heterogenic response of prokaryotes toward silver nanoparticles and ions is facilitated by phenotypes and attachment of silver aggregates to cell surfaces.
    Guo Y; Stärk HJ; Hause G; Schmidt M; Harms H; Wick LY; Müller S
    Cytometry A; 2017 Aug; 91(8):775-784. PubMed ID: 28110496
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single particle ICP-MS as a tool for determining the stability of silver nanoparticles in aquatic matrixes under various environmental conditions, including treatment by ozonation.
    Telgmann L; Nguyen MT; Shen L; Yargeau V; Hintelmann H; Metcalfe CD
    Anal Bioanal Chem; 2016 Jul; 408(19):5169-77. PubMed ID: 27311958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of different water conditions on dissolution of nanosilver.
    Chen SF; Zhang H; Lin QY
    Water Sci Technol; 2013; 68(8):1745-50. PubMed ID: 24185055
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna.
    Zhao CM; Wang WX
    Nanotoxicology; 2012 Jun; 6(4):361-70. PubMed ID: 21591875
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous size characterization and mass quantification of the in vivo core-biocorona structure and dissolved species of silver nanoparticles.
    Dong L; Zhou X; Hu L; Yin Y; Liu J
    J Environ Sci (China); 2018 Jan; 63():227-235. PubMed ID: 29406105
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contrasting effects of iron plaque on the bioavailability of metallic and sulfidized silver nanoparticles to rice.
    Wu Y; Yang L; Gong H; Dang F; Zhou DM
    Environ Pollut; 2020 May; 260():113969. PubMed ID: 31991350
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chloride-induced shape transformation of silver nanoparticles in a water environment.
    Zhang L; Li X; He R; Wu L; Zhang L; Zeng J
    Environ Pollut; 2015 Sep; 204():145-51. PubMed ID: 25965964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.