These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 21808990)

  • 61. Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions.
    Li Y; Zhang W; Niu J; Chen Y
    Environ Sci Technol; 2013 Sep; 47(18):10293-301. PubMed ID: 23952964
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples.
    Guo H; Xing B; Hamlet LC; Chica A; He L
    Sci Total Environ; 2016 Jun; 554-555():246-52. PubMed ID: 26956173
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida.
    Li L; Wu H; Peijnenburg WJ; van Gestel CA
    Nanotoxicology; 2015; 9(6):792-801. PubMed ID: 25387252
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biosynthetic Conversion of Ag⁺ to highly Stable Ag⁰ Nanoparticles by Wild Type and Cell Wall Deficient Strains of
    Rahman A; Kumar S; Bafana A; Dahoumane SA; Jeffryes C
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30597856
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A direct solid sampling analysis method for the detection of silver nanoparticles in biological matrices.
    Feichtmeier NS; Ruchter N; Zimmermann S; Sures B; Leopold K
    Anal Bioanal Chem; 2016 Jan; 408(1):295-305. PubMed ID: 26483187
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transformation-dissolution reactions partially explain adverse effects of metallic silver nanoparticles to soil nitrification in different soils.
    Bollyn J; Willaert B; Kerré B; Moens C; Arijs K; Mertens J; Leverett D; Oorts K; Smolders E
    Environ Toxicol Chem; 2018 Aug; 37(8):2123-2131. PubMed ID: 29691884
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Carbon Nanotube Integrative Sampler (CNIS) for passive sampling of nanosilver in the aquatic environment.
    Shen L; Fischer J; Martin J; Hoque ME; Telgmann L; Hintelmann H; Metcalfe CD; Yargeau V
    Sci Total Environ; 2016 Nov; 569-570():223-233. PubMed ID: 27343941
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tangential flow ultrafiltration: a "green" method for the size selection and concentration of colloidal silver nanoparticles.
    Anders CB; Baker JD; Stahler AC; Williams AJ; Sisco JN; Trefry JC; Wooley DP; Pavel Sizemore IE
    J Vis Exp; 2012 Oct; (68):. PubMed ID: 23070148
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quantification of the uptake of silver nanoparticles and ions to HepG2 cells.
    Yu SJ; Chao JB; Sun J; Yin YG; Liu JF; Jiang GB
    Environ Sci Technol; 2013 Apr; 47(7):3268-74. PubMed ID: 23458171
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Synthesis of silver nanoparticle: a new analytical approach for the quantitative assessment of adrenaline.
    Siddiqui MR; Rafiquee MZ; Wabaidur SM; Alothman ZA; Ali MS; Allohedan HA
    Anal Sci; 2015; 31(5):437-43. PubMed ID: 25958874
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development of an analytical method for assessment of silver nanoparticle content in biological matrices by inductively coupled plasma mass spectrometry.
    Poitras EP; Levine MA; Harrington JM; Essader AS; Fennell TR; Snyder RW; Black SL; Sumner SS; Levine KE
    Biol Trace Elem Res; 2015 Feb; 163(1-2):184-92. PubMed ID: 25308764
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Transfer Study of Silver Nanoparticles in Poultry Production.
    Gallocchio F; Biancotto G; Cibin V; Losasso C; Belluco S; Peters R; van Bemmel G; Cascio C; Weigel S; Tromp P; Gobbo F; Catania S; Ricci A
    J Agric Food Chem; 2017 May; 65(18):3767-3774. PubMed ID: 28437606
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.
    Adegboyega NF; Sharma VK; Siskova K; Zbořil R; Sohn M; Schultz BJ; Banerjee S
    Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide-metal nanoparticle conjugates.
    Huy GD; Zhang M; Zuo P; Ye BC
    Analyst; 2011 Aug; 136(16):3289-94. PubMed ID: 21743915
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Visualization, quantification and coordination of Ag
    Veronesi G; Deniaud A; Gallon T; Jouneau PH; Villanova J; Delangle P; Carrière M; Kieffer I; Charbonnier P; Mintz E; Michaud-Soret I
    Nanoscale; 2016 Sep; 8(38):17012-17021. PubMed ID: 27722394
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Oxidative Dissolution of Silver Nanoparticles by Chlorine: Implications to Silver Nanoparticle Fate and Toxicity.
    Garg S; Rong H; Miller CJ; Waite TD
    Environ Sci Technol; 2016 Apr; 50(7):3890-6. PubMed ID: 26986484
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine.
    Alula MT; Karamchand L; Hendricks NR; Blackburn JM
    Anal Chim Acta; 2018 May; 1007():40-49. PubMed ID: 29405987
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Influence of aqueous food simulants on potential nanoparticle detection in migration studies involving nanoenabled food-contact substances.
    Addo Ntim S; Thomas TA; Noonan GO
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 May; 33(5):905-12. PubMed ID: 27049753
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Investigating the behavior of ultratrace levels of nanoparticulate and ionic silver in a seawater mesocosm using single particle inductively coupled plasma - mass spectrometry.
    Chronakis MI; Mavrakis E; García RÁ; Montes-Bayón M; Bettmer J; Pitta P; Tsapakis M; Kalantzi I; Tsiola A; Pergantis SA
    Chemosphere; 2023 Sep; 336():139109. PubMed ID: 37270041
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Catalytic role of iron in the formation of silver nanoparticles in photo-irradiated Ag
    Yin Y; Han D; Tai C; Tan Z; Zhou X; Yu S; Liu J; Jiang G
    Environ Pollut; 2017 Jun; 225():66-73. PubMed ID: 28351007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.