These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21809054)

  • 1. Response of Saccharomyces cerevisiae to cadmium and nickel stress: the use of the sugar cane vinasse as a potential mitigator.
    Oliveira RP; Basso LC; Junior AP; Penna TC; Del Borghi M; Converti A
    Biol Trace Elem Res; 2012 Jan; 145(1):71-80. PubMed ID: 21809054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of sugar cane vinasse to mitigate aluminum toxicity to Saccharomyces cerevisiae.
    de Souza Oliveira RP; Rivas Torres B; Zilli M; de Araújo Viana Marques D; Basso LC; Converti A
    Arch Environ Contam Toxicol; 2009 Oct; 57(3):488-94. PubMed ID: 19184166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Increase of rising activity of commercial yeasts by application of stress conditions during their propagation].
    Galvagno MA; Cerrutti P
    Rev Argent Microbiol; 2004; 36(1):41-6. PubMed ID: 15174749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes.
    Parnaudeau V; Condom N; Oliver R; Cazevieille P; Recous S
    Bioresour Technol; 2008 Apr; 99(6):1553-62. PubMed ID: 17582760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium-induced oxidative stress in Saccharomyces cerevisiae.
    Muthukumar K; Nachiappan V
    Indian J Biochem Biophys; 2010 Dec; 47(6):383-7. PubMed ID: 21355423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of baker's yeast strains exhibiting significant growth on Japanese beet molasses and compound analysis of the molasses types.
    Nakata H; Tamura M; Shintani T; Gomi K
    J Biosci Bioeng; 2014 Jun; 117(6):715-9. PubMed ID: 24333188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutation breeding of Saccharomyces cerevisiae with lower methanol content and the effects of pectinase, cellulase and glycine in sugar cane spirits.
    Liang MH; Liang YJ; Wu XN; Zhou SS; Jiang JG
    J Sci Food Agric; 2015 Jul; 95(9):1949-55. PubMed ID: 25204269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth rate and medium composition strongly affect folate content in Saccharomyces cerevisiae.
    Hjortmo S; Patring J; Andlid T
    Int J Food Microbiol; 2008 Mar; 123(1-2):93-100. PubMed ID: 18234383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of Dekkera bruxellensis in a sugarcane-based fuel ethanol fermentation plant.
    da Silva TC; Leite FC; De Morais MA
    Lett Appl Microbiol; 2016 Apr; 62(4):354-8. PubMed ID: 26928357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of Saccharomyces cerevisiae growth in response to cadmium toxicity.
    Hietala KA; Lynch ML; Allshouse JC; Johns CJ; Roane TM
    J Basic Microbiol; 2006; 46(3):196-202. PubMed ID: 16721879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of goldfish mitochondrial metabolism by in vitro exposure to Cd, Cu and Ni.
    Garceau N; Pichaud N; Couture P
    Aquat Toxicol; 2010 Jun; 98(2):107-12. PubMed ID: 20207426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae.
    He X; Guo X; Liu N; Zhang B
    Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplified modeling of fed-batch alcoholic fermentation of sugarcane blackstrap molasses.
    Converti A; Arni S; Sato S; de Carvalho JC; Aquarone E
    Biotechnol Bioeng; 2003 Oct; 84(1):88-95. PubMed ID: 12910547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fermentation of sugarcane molasses by Dekkera bruxellensis and the mobilization of reserve carbohydrates.
    Pereira LF; Lucatti E; Basso LC; de Morais MA
    Antonie Van Leeuwenhoek; 2014 Mar; 105(3):481-9. PubMed ID: 24370978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined effects of cadmium and nickel on testicular xenobiotic metabolizing enzymes in rats.
    Işcan M; Ada AO; Coban T; Kapucuoğlu N; Aydin A; Isimer A
    Biol Trace Elem Res; 2002 Nov; 89(2):177-90. PubMed ID: 12449241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast selection for fuel ethanol production in Brazil.
    Basso LC; de Amorim HV; de Oliveira AJ; Lopes ML
    FEMS Yeast Res; 2008 Nov; 8(7):1155-63. PubMed ID: 18752628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxic effects caused by heavy metals in the yeast Saccharomyces cerevisiae: a comparative study.
    Soares EV; Hebbelinck K; Soares HM
    Can J Microbiol; 2003 May; 49(5):336-43. PubMed ID: 12897827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the residue of spirit production and bio-ethanol for protein production by yeasts.
    Silva CF; Arcuri SL; Campos CR; Vilela DM; Alves JG; Schwan RF
    Waste Manag; 2011 Jan; 31(1):108-14. PubMed ID: 20864326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium signaling mediates the response to cadmium toxicity in Saccharomyces cerevisiae cells.
    Ruta LL; Popa VC; Nicolau I; Danet AF; Iordache V; Neagoe AD; Farcasanu IC
    FEBS Lett; 2014 Aug; 588(17):3202-12. PubMed ID: 25017440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The subcellular distribution of nickel in Ni-sensitive and Ni-resistant strains of Saccharomyces cerevisiae.
    Joho M; Ishikawa Y; Kunikane M; Inouhe M; Tohoyama H; Murayama T
    Microbios; 1992; 71(287):149-59. PubMed ID: 1360616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.