These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21809334)

  • 1. Optically controlled contraction of photosensitive skeletal muscle cells.
    Asano T; Ishizua T; Yawo H
    Biotechnol Bioeng; 2012 Jan; 109(1):199-204. PubMed ID: 21809334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic induction of contractile ability in immature C2C12 myotubes.
    Asano T; Ishizuka T; Morishima K; Yawo H
    Sci Rep; 2015 Feb; 5():8317. PubMed ID: 25661648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myogenic Maturation by Optical-Training in Cultured Skeletal Muscle Cells.
    Asano T; Ishizuka T; Yawo H
    Methods Mol Biol; 2017; 1668():135-145. PubMed ID: 28842907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes.
    Nedachi T; Hatakeyama H; Kono T; Sato M; Kanzaki M
    Am J Physiol Endocrinol Metab; 2009 Oct; 297(4):E866-78. PubMed ID: 19622786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of myotube contraction using electrical pulse stimulation for bio-actuator.
    Yamasaki K; Hayashi H; Nishiyama K; Kobayashi H; Uto S; Kondo H; Hashimoto S; Fujisato T
    J Artif Organs; 2009; 12(2):131-7. PubMed ID: 19536631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.
    Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M
    J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness.
    Kaji H; Ishibashi T; Nagamine K; Kanzaki M; Nishizawa M
    Biomaterials; 2010 Sep; 31(27):6981-6. PubMed ID: 20561677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic control of contractile function in skeletal muscle.
    Bruegmann T; van Bremen T; Vogt CC; Send T; Fleischmann BK; Sasse P
    Nat Commun; 2015 Jun; 6():7153. PubMed ID: 26035411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of C2C12 Differentiation and Control of the Beating Dynamics of Contractile Cells for a Muscle-Driven Biosyncretic Crawler by Electrical Stimulation.
    Liu L; Zhang C; Wang W; Xi N; Wang Y
    Soft Robot; 2018 Dec; 5(6):748-760. PubMed ID: 30277855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of contractile skeletal muscle tissues using directly converted myoblasts from human fibroblasts.
    Shimizu K; Ohsumi S; Kishida T; Mazda O; Honda H
    J Biosci Bioeng; 2020 May; 129(5):632-637. PubMed ID: 31859190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes.
    Fujita H; Nedachi T; Kanzaki M
    Exp Cell Res; 2007 May; 313(9):1853-65. PubMed ID: 17425954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micropatterning contractile C2C12 myotubes embedded in a fibrin gel.
    Nagamine K; Kawashima T; Ishibashi T; Kaji H; Kanzaki M; Nishizawa M
    Biotechnol Bioeng; 2010 Apr; 105(6):1161-7. PubMed ID: 20014142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myoblast proliferation and syncytial fusion both depend on connexin43 function in transfected skeletal muscle primary cultures.
    Gorbe A; Krenacs T; Cook JE; Becker DL
    Exp Cell Res; 2007 Apr; 313(6):1135-48. PubMed ID: 17331498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts.
    Eom YW; Lee JE; Yang MS; Jang IK; Kim HE; Lee DH; Kim YJ; Park WJ; Kong JH; Shim KY; Lee JI; Kim HS
    Biochem Biophys Res Commun; 2011 Apr; 408(1):167-73. PubMed ID: 21473854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization.
    Burattini S; Ferri P; Battistelli M; Curci R; Luchetti F; Falcieri E
    Eur J Histochem; 2004; 48(3):223-33. PubMed ID: 15596414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterning the differentiation of C2C12 skeletal myoblasts.
    Bajaj P; Reddy B; Millet L; Wei C; Zorlutuna P; Bao G; Bashir R
    Integr Biol (Camb); 2011 Sep; 3(9):897-909. PubMed ID: 21842084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives.
    Shimizu K; Fujita H; Nagamori E
    Biotechnol Bioeng; 2009 Jun; 103(3):631-8. PubMed ID: 19189396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel method for measuring active tension generation by C2C12 myotube using UV-crosslinked collagen film.
    Fujita H; Shimizu K; Nagamori E
    Biotechnol Bioeng; 2010 Jun; 106(3):482-9. PubMed ID: 20178119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of electroconformational changes in membrane proteins: field-induced reductions in intra membrane nonlinear charge movement currents.
    Chen W
    Bioelectrochemistry; 2004 Jun; 63(1-2):333-5. PubMed ID: 15110298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C2C12 co-culture on a fibroblast substratum enables sustained survival of contractile, highly differentiated myotubes with peripheral nuclei and adult fast myosin expression.
    Cooper ST; Maxwell AL; Kizana E; Ghoddusi M; Hardeman EC; Alexander IE; Allen DG; North KN
    Cell Motil Cytoskeleton; 2004 Jul; 58(3):200-11. PubMed ID: 15146538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.