These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21809335)

  • 1. Organoclay-assisted interfacial polymerization for microfluidic production of monodisperse PEG-microdroplets and in situ encapsulation of E. coli.
    Wang KW; Lee KG; Park TJ; Lee YC; Yang JW; Kim DH; Lee SJ; Park JY
    Biotechnol Bioeng; 2012 Jan; 109(1):289-94. PubMed ID: 21809335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and utilization of E. coli-encapsulated PEG-based microdroplet using a microfluidic chip for biological application.
    Lee KG; Park TJ; Soo SY; Wang KW; Kim BI; Park JH; Lee CS; Kim DH; Lee SJ
    Biotechnol Bioeng; 2010 Nov; 107(4):747-51. PubMed ID: 20632371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.
    Krutkramelis K; Xia B; Oakey J
    Lab Chip; 2016 Apr; 16(8):1457-65. PubMed ID: 26987384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary-based Centrifugal Microfluidic Device for Size-controllable Formation of Monodisperse Microdroplets.
    Morita M; Yamashita H; Hayakawa M; Onoe H; Takinoue M
    J Vis Exp; 2016 Feb; (108):53860. PubMed ID: 26967046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized poly(ethylene glycol) diacrylate microgels by microfluidics: In situ peptide encapsulation for in serum selective protein detection.
    Celetti G; Di Natale C; Causa F; Battista E; Netti PA
    Colloids Surf B Biointerfaces; 2016 Sep; 145():21-29. PubMed ID: 27137799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-Purged Microfluidic Device to Enhance Cell Viability in Photopolymerized PEG Hydrogel Microparticles.
    Xia B; Krutkramelis K; Oakey J
    Biomacromolecules; 2016 Jul; 17(7):2459-65. PubMed ID: 27285343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilizing Coacervate by Microfluidic Engulfment Induced by Controlled Interfacial Energy.
    Seo KD; Shin S; Yoo HY; Cao J; Lee S; Yoo JW; Kim DS; Hwang DS
    Biomacromolecules; 2020 Feb; 21(2):930-938. PubMed ID: 31769971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water and Oil Insoluble PEGDA-Based Microcapsule: Biocompatible and Multicomponent Encapsulation.
    Nam C; Yoon J; Ryu SA; Choi CH; Lee H
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40366-40371. PubMed ID: 30422614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation.
    Liu EY; Jung S; Weitz DA; Yi H; Choi CH
    Lab Chip; 2018 Jan; 18(2):323-334. PubMed ID: 29242870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Production of Cell-Laden Microspheres Using a Flexible Microfluidic Encapsulation Platform.
    Seeto WJ; Tian Y; Pradhan S; Kerscher P; Lipke EA
    Small; 2019 Nov; 15(47):e1902058. PubMed ID: 31468632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system.
    Choi CH; Jung JH; Kim DW; Chung YM; Lee CS
    Lab Chip; 2008 Sep; 8(9):1544-51. PubMed ID: 18818811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
    Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS
    Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive material for microfluidics.
    Rogers CI; Pagaduan JV; Nordin GP; Woolley AT
    Anal Chem; 2011 Aug; 83(16):6418-25. PubMed ID: 21728310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of polymer molecular weight and cell seeding density on viability of cells entrapped within PEGDA hydrogel microspheres.
    Perera D; Medini M; Seethamraju D; Falkowski R; White K; Olabisi RM
    J Microencapsul; 2018 Aug; 35(5):475-481. PubMed ID: 30280941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres.
    Jiang Z; Xia B; McBride R; Oakey J
    J Mater Chem B; 2017 Jan; 5(1):173-180. PubMed ID: 28066550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device.
    Chen M; Aluunmani R; Bolognesi G; Vladisavljević GT
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic-assisted fabrication of flexible and location traceable organo-motor.
    Seo KD; Kwak BK; Sanchez S; Kim DS
    IEEE Trans Nanobioscience; 2015 Apr; 14(3):298-304. PubMed ID: 25751871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encapsulation of
    Jegatheeswaran S; Tan JH; Fraser AG; Hwang DK
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):59037-59043. PubMed ID: 38063021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoliths from poly(ethylene glycol) diacrylate and dimethacrylate for capillary hydrophobic interaction chromatography of proteins.
    Li Y; Tolley HD; Lee ML
    J Chromatogr A; 2010 Jul; 1217(30):4934-45. PubMed ID: 20576269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulation of Monodisperse Microdroplets in Nanofibers through a Microfluidic-Electrospinning Hybrid Method.
    Wang J; Cao X; Chen R; Zhou J; Zhang H; Ma X; Bao F
    Langmuir; 2023 Jan; 39(2):813-819. PubMed ID: 36595715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.