These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 21809453)

  • 41. Ontogeny of ion transport across fetal pulmonary epithelial cells in monolayer culture.
    Rao AK; Cott GR
    Am J Physiol; 1991 Aug; 261(2 Pt 1):L178-87. PubMed ID: 1872411
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cystic fibrosis transmembrane conductance regulator (CFTR) dependent cytoskeletal tension during lung organogenesis.
    Cohen JC; Larson JE
    Dev Dyn; 2006 Oct; 235(10):2736-48. PubMed ID: 16906518
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of rhinovirus infection on the expression and function of cystic fibrosis transmembrane conductance regulator and epithelial sodium channel in human nasal mucosa.
    Kim JH; Kwon HJ; Jang YJ
    Ann Allergy Asthma Immunol; 2012 Mar; 108(3):182-7. PubMed ID: 22374202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regional expression of CFTR in developing human respiratory tissues.
    Tizzano EF; O'Brodovich H; Chitayat D; Bènichou JC; Buchwald M
    Am J Respir Cell Mol Biol; 1994 Apr; 10(4):355-62. PubMed ID: 7510983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of NO-donors on chloride efflux, intracellular Ca(2+) concentration and mRNA expression of CFTR and ENaC in cystic fibrosis airway epithelial cells.
    Oliynyk I; Hussain R; Amin A; Johannesson M; Roomans GM
    Exp Mol Pathol; 2013 Jun; 94(3):474-80. PubMed ID: 23523754
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ambroxol-induced modification of ion transport in human airway Calu-3 epithelia.
    Hasegawa I; Niisato N; Iwasaki Y; Marunaka Y
    Biochem Biophys Res Commun; 2006 May; 343(2):475-82. PubMed ID: 16546120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. HCO3- transport in relation to mucus secretion from submucosal glands.
    Joo NS; Krouse ME; Wu JV; Saenz Y; Jayaraman S; Verkman AS; Wine JJ
    JOP; 2001 Jul; 2(4 Suppl):280-4. PubMed ID: 11875272
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Salt and water transport across the alveolar epithelium in the developing lung: correlations between function and recent molecular biology advances (Review).
    Folkesson HG; Norlin A; Baines DL
    Int J Mol Med; 1998 Nov; 2(5):515-31. PubMed ID: 9858647
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Altered cyclic expression of epithelial Na+ channel subunits and cystic fibrosis transmembrane conductance regulator in mouse endometrium by a low sodium diet.
    Tsang LL; Chan LN; Chan HC
    Cell Biol Int; 2004; 28(7):549-55. PubMed ID: 15261163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lung epithelial ion transport in neonatal lung disease.
    Pitkänen O
    Biol Neonate; 2001 May; 80 Suppl 1():14-7. PubMed ID: 11359039
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR.
    Brennan SC; Wilkinson WJ; Tseng HE; Finney B; Monk B; Dibble H; Quilliam S; Warburton D; Galietta LJ; Kemp PJ; Riccardi D
    Sci Rep; 2016 Feb; 6():21975. PubMed ID: 26911344
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA interference for CFTR attenuates lung fluid absorption at birth in rats.
    Li T; Koshy S; Folkesson HG
    Respir Res; 2008 Jul; 9(1):55. PubMed ID: 18652671
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-resolution imaging of the actin cytoskeleton and epithelial sodium channel, CFTR, and aquaporin-9 localization in the vas deferens.
    Sharma S; Kumaran GK; Hanukoglu I
    Mol Reprod Dev; 2020 Feb; 87(2):305-319. PubMed ID: 31950584
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis.
    Brand JD; Lazrak A; Trombley JE; Shei RJ; Adewale AT; Tipper JL; Yu Z; Ashtekar AR; Rowe SM; Matalon S; Harrod KS
    JCI Insight; 2018 Oct; 3(20):. PubMed ID: 30333319
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distribution of ion transport mRNAs throughout murine nose and lung.
    Rochelle LG; Li DC; Ye H; Lee E; Talbot CR; Boucher RC
    Am J Physiol Lung Cell Mol Physiol; 2000 Jul; 279(1):L14-24. PubMed ID: 10893198
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sex hormones regulate CFTR in developing fetal rat lung epithelial cells.
    Sweezey NB; Ghibu F; Gagnon S
    Am J Physiol; 1997 May; 272(5 Pt 1):L844-51. PubMed ID: 9176247
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel role for CFTR in fluid absorption from the distal airspaces of the lung.
    Fang X; Fukuda N; Barbry P; Sartori C; Verkman AS; Matthay MA
    J Gen Physiol; 2002 Feb; 119(2):199-207. PubMed ID: 11815669
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways.
    Enuka Y; Hanukoglu I; Edelheit O; Vaknine H; Hanukoglu A
    Histochem Cell Biol; 2012 Mar; 137(3):339-53. PubMed ID: 22207244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A spatial model of fluid recycling in the airways of the lung.
    Sharp K; Crampin E; Sneyd J
    J Theor Biol; 2015 Oct; 382():198-215. PubMed ID: 26169010
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae.
    Londino JD; Lazrak A; Collawn JF; Bebok Z; Harrod KS; Matalon S
    Am J Physiol Lung Cell Mol Physiol; 2017 Nov; 313(5):L845-L858. PubMed ID: 28775098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.