BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21809830)

  • 1. Formulation and drying of alginate beads for controlled release and stabilization of invertase.
    Santagapita PR; Mazzobre MF; Buera MP
    Biomacromolecules; 2011 Sep; 12(9):3147-55. PubMed ID: 21809830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of supramolecular interactions of dextran-β-cyclodextrin polymers on invertase activity in freeze-dried systems.
    Santagapita PR; Mazzobre MF; Buera MP; Ramirez HL; Brizuela LG; Corti HR; Villalonga R
    Biotechnol Prog; 2015; 31(3):791-8. PubMed ID: 25736897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of novel gastroretentive drug delivery system of gliclazide: hollow beads.
    Awasthi R; Kulkarni GT
    Drug Dev Ind Pharm; 2014 Mar; 40(3):398-408. PubMed ID: 23418961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gastroretentive delivery systems: hollow beads.
    Talukder R; Fassihi R
    Drug Dev Ind Pharm; 2004 Apr; 30(4):405-12. PubMed ID: 15132183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure/function relationships of several biopolymers as related to invertase stability in dehydrated systems.
    Santagapita PR; Brizuela LG; Mazzobre MF; Ramirez HL; Corti HR; Santana RV; Buera MP
    Biomacromolecules; 2008 Feb; 9(2):741-7. PubMed ID: 18189362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrocolloid carriers with filler inclusion for diltiazem hydrochloride release.
    Gal A; Nussinovitch A
    J Pharm Sci; 2007 Jan; 96(1):168-78. PubMed ID: 17031844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined technique based on prilling and microwave assisted treatments for the production of ketoprofen controlled release dosage forms.
    Auriemma G; Del Gaudio P; Barba AA; d'Amore M; Aquino RP
    Int J Pharm; 2011 Aug; 415(1-2):196-205. PubMed ID: 21679754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation of lactase in Ca(II)-alginate beads: Effect of stabilizers and drying methods.
    Traffano-Schiffo MV; Castro-Giraldez M; Fito PJ; Santagapita PR
    Food Res Int; 2017 Oct; 100(Pt 1):296-303. PubMed ID: 28873691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate/pectin aerogel microspheres for controlled release of proanthocyanidins.
    Chen K; Zhang H
    Int J Biol Macromol; 2019 Sep; 136():936-943. PubMed ID: 31229541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of alginate beads loaded with ibuprofen lysine salt and optimization of the preparation method.
    Caballero F; Foradada M; Miñarro M; Pérez-Lozano P; García-Montoya E; Ticó JR; Suñé-Negre JM
    Int J Pharm; 2014 Jan; 460(1-2):181-8. PubMed ID: 24177314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, Preparation and Evaluation of HPMC-Based PAA or SA Freeze-Dried Scaffolds for Vaginal Delivery of Fluconazole.
    Gafitanu CA; Filip D; Cernatescu C; Rusu D; Tuchilus CG; Macocinschi D; Zaltariov MF
    Pharm Res; 2017 Oct; 34(10):2185-2196. PubMed ID: 28707165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formulation and evaluation of floating, pulsatile, multiparticulates using pH-dependent swellable polymers.
    Gaikwad M; Belgamwar VS; Tekade A; Gattani S; Surana S
    Pharm Dev Technol; 2010; 15(2):209-16. PubMed ID: 19621990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beads made of α-cyclodextrin and soybean oil: the drying method influences bead properties and drug release.
    Hamoudi MC; Saunier J; Gueutin C; Fattal E; Bochot A
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1306-14. PubMed ID: 23050693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of furosemide-loaded alginate microspheres prepared by ionotropic external gelation technique.
    Das MK; Senapati PC
    Acta Pol Pharm; 2007; 64(3):253-62. PubMed ID: 17695149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release characteristics of chitosan treated alginate beads: II. Sustained release of a low molecular drug from chitosan treated alginate beads.
    Sezer AD; Akbuğa J
    J Microencapsul; 1999; 16(6):687-96. PubMed ID: 10575621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alginate-pectin microcapsules as a potential for folic acid delivery in foods.
    Madziva H; Kailasapathy K; Phillips M
    J Microencapsul; 2005 Jun; 22(4):343-51. PubMed ID: 16214783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resveratrol-loaded calcium-pectinate beads: effects of formulation parameters on drug release and bead characteristics.
    Das S; Ng KY
    J Pharm Sci; 2010 Feb; 99(2):840-60. PubMed ID: 19653272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of invertase in calcium alginate and calcium alginate-kappa-carrageenan beads and its application in bioethanol production.
    Malhotra I; Basir SF
    Prep Biochem Biotechnol; 2020; 50(5):494-503. PubMed ID: 31900037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyethylene glycol-based low generation dendrimers functionalized with β-cyclodextrin as cryo- and dehydro-protectant of catalase formulations.
    Santagapita PR; Mazzobre MF; Cruz AG; Corti HR; Villalonga R; Buera MP
    Biotechnol Prog; 2013; 29(3):786-95. PubMed ID: 23596101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads.
    Pasparakis G; Bouropoulos N
    Int J Pharm; 2006 Oct; 323(1-2):34-42. PubMed ID: 16828245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.