These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21809875)

  • 1. Redox-switchable superhydrophobic silver composite.
    Sinha AK; Basu M; Pradhan M; Sarkar S; Negishi Y; Pal T
    Langmuir; 2011 Sep; 27(18):11629-35. PubMed ID: 21809875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible superhydrophobic to superhydrophilic conversion of Ag@TiO2 composite nanofiber surfaces.
    Borras A; Barranco A; González-Elipe AR
    Langmuir; 2008 Aug; 24(15):8021-6. PubMed ID: 18576610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces.
    Su Y; Ji B; Zhang K; Gao H; Huang Y; Hwang K
    Langmuir; 2010 Apr; 26(7):4984-9. PubMed ID: 20092298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays.
    Li Y; Huang XJ; Heo SH; Li CC; Choi YK; Cai WP; Cho SO
    Langmuir; 2007 Feb; 23(4):2169-74. PubMed ID: 17279709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of biomimetic superhydrophobic surface on engineering materials by a simple electroless galvanic deposition method.
    Xu X; Zhang Z; Yang J
    Langmuir; 2010 Mar; 26(5):3654-8. PubMed ID: 20000636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry.
    Ding Y; Xu S; Zhang Y; Wang AC; Wang MH; Xiu Y; Wong CP; Wang ZL
    Nanotechnology; 2008 Sep; 19(35):355708. PubMed ID: 21828862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step controllable fabrication of superhydrophobic surfaces with special composite structure on zinc substrates.
    Ning T; Xu W; Lu S
    J Colloid Interface Sci; 2011 Sep; 361(1):388-96. PubMed ID: 21679962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal/plasma-driven reversible wettability switching of a bare gold film on a poly(dimethylsiloxane) surface by electroless plating.
    Wu J; Bai HJ; Zhang XB; Xu JJ; Chen HY
    Langmuir; 2010 Jan; 26(2):1191-8. PubMed ID: 19722553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films.
    Saison T; Peroz C; Chauveau V; Berthier S; Sondergard E; Arribart H
    Bioinspir Biomim; 2008 Dec; 3(4):046004. PubMed ID: 18812652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of porous hierarchical polymer/ceramic composites by electron irradiation of organic/inorganic polymers: route to a highly durable, large-area superhydrophobic coating.
    Lee EJ; Kim JJ; Cho SO
    Langmuir; 2010 Mar; 26(5):3024-30. PubMed ID: 20121048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of superhydrophobic surfaces by biomimetic silicification and fluorination.
    Cho WK; Kang SM; Kim DJ; Yang SH; Choi IS
    Langmuir; 2006 Dec; 22(26):11208-13. PubMed ID: 17154605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light.
    Zhang H; Fan X; Quan X; Chen S; Yu H
    Environ Sci Technol; 2011 Jul; 45(13):5731-6. PubMed ID: 21663048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and superhydrophobic stabilities of two-scale surfacial structure of lotus leaves.
    Yu Y; Zhao ZH; Zheng QS
    Langmuir; 2007 Jul; 23(15):8212-6. PubMed ID: 17583919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro/nanobinary structure of silver films on copper alloys with stable water-repellent property under dynamic conditions.
    Gu C; Ren H; Tu J; Zhang TY
    Langmuir; 2009 Oct; 25(20):12299-307. PubMed ID: 19754194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer.
    Chen W; Thoreson MD; Ishii S; Kildishev AV; Shalaev VM
    Opt Express; 2010 Mar; 18(5):5124-34. PubMed ID: 20389525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid.
    Wu T; Pan Y; Li L
    J Colloid Interface Sci; 2010 Aug; 348(1):265-70. PubMed ID: 20427047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials.
    Cao L; Hu HH; Gao D
    Langmuir; 2007 Apr; 23(8):4310-4. PubMed ID: 17371061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.