These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21809875)

  • 21. Switchable wettability on cooperative dual-responsive poly-L-lysine surface.
    Guo Y; Xia F; Xu L; Li J; Yang W; Jiang L
    Langmuir; 2010 Jan; 26(2):1024-8. PubMed ID: 20030299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organic-inorganic composite nanocoatings with superhydrophobicity, good transparency, and thermal stability.
    Xu QF; Wang JN; Sanderson KD
    ACS Nano; 2010 Apr; 4(4):2201-9. PubMed ID: 20302323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag.
    Jung YC; Bhushan B
    ACS Nano; 2009 Dec; 3(12):4155-63. PubMed ID: 19947581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Black Silicon/Elastomer Composite Surface with Switchable Wettability and Adhesion between Lotus and Rose Petal Effects by Mechanical Strain.
    Park JK; Yang Z; Kim S
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):33333-33340. PubMed ID: 28901732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern.
    Lim HS; Han JT; Kwak D; Jin M; Cho K
    J Am Chem Soc; 2006 Nov; 128(45):14458-9. PubMed ID: 17090019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile fabrication and mechanistic understanding of a transparent reversible superhydrophobic - superhydrophilic surface.
    Majhy B; Iqbal R; Sen AK
    Sci Rep; 2018 Dec; 8(1):18018. PubMed ID: 30575778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure.
    Mockenhaupt B; Ensikat HJ; Spaeth M; Barthlott W
    Langmuir; 2008 Dec; 24(23):13591-7. PubMed ID: 18959433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of superhydrophobic and heat-insulating antimony doped tin oxide/polyurethane films by cast replica micromolding.
    Feng J; Huang B; Zhong M
    J Colloid Interface Sci; 2009 Aug; 336(1):268-72. PubMed ID: 19394955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Petal effect: a superhydrophobic state with high adhesive force.
    Feng L; Zhang Y; Xi J; Zhu Y; Wang N; Xia F; Jiang L
    Langmuir; 2008 Apr; 24(8):4114-9. PubMed ID: 18312016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on wettability of polypropylene/methyl-silicone composite film and polypropylene monolithic material.
    Hou W; Mu B; Wang Q
    J Colloid Interface Sci; 2008 Nov; 327(1):120-4. PubMed ID: 18755474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ag dendrites with rod-like tips: synthesis, characterization and fabrication of superhydrophobic surfaces.
    Ren W; Guo S; Dong S; Wang E
    Nanoscale; 2011 May; 3(5):2241-6. PubMed ID: 21479306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Montmorillonite-supported Ag/TiO(2) nanoparticles: an efficient visible-light bacteria photodegradation material.
    Wu TS; Wang KX; Li GD; Sun SY; Sun J; Chen JS
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):544-50. PubMed ID: 20356203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles.
    Yao T; Wang C; Lin Q; Li X; Chen X; Wu J; Zhang J; Yu K; Yang B
    Nanotechnology; 2009 Feb; 20(6):065304. PubMed ID: 19417380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles.
    Pant HR; Pandeya DR; Nam KT; Baek WI; Hong ST; Kim HY
    J Hazard Mater; 2011 May; 189(1-2):465-71. PubMed ID: 21429663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of a lotus-like micro-nanoscale binary structured surface and wettability modulation from superhydrophilic to superhydrophobic.
    Wu X; Shi G
    Nanotechnology; 2005 Oct; 16(10):2056-60. PubMed ID: 20817971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures.
    Im M; Im H; Lee JH; Yoon JB; Choi YK
    Langmuir; 2010 Nov; 26(22):17389-97. PubMed ID: 20879754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2009 Aug; 25(16):9208-18. PubMed ID: 19441842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of system parameters on making aluminum alloy lotus.
    Guo Z; Zhou F; Hao J; Liu W
    J Colloid Interface Sci; 2006 Nov; 303(1):298-305. PubMed ID: 16876181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superhydrophobic surfaces: from natural to biomimetic to functional.
    Guo Z; Liu W; Su BL
    J Colloid Interface Sci; 2011 Jan; 353(2):335-55. PubMed ID: 20846662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.