These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21810114)

  • 1. Estimation of simulated phosphene size based on tactile perception.
    Lu Y; Chen P; Zhao Y; Shi J; Ren Q; Chai X
    Artif Organs; 2012 Jan; 36(1):115-20. PubMed ID: 21810114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of tactile perception based on phosphene positioning using simulated prosthetic vision.
    Chai X; Zhang L; Li W; Shao F; Yang K; Ren Q
    Artif Organs; 2008 Feb; 32(2):110-5. PubMed ID: 18269352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Configuration-based processing of phosphene pattern recognition for simulated prosthetic vision.
    Guo H; Qin R; Qiu Y; Zhu Y; Tong S
    Artif Organs; 2010 Apr; 34(4):324-30. PubMed ID: 20420615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the position of simulated phosphenes using a tactile guide.
    Lu Y; Fan J; Zhou C; Zhao Y; Wang J; Tao C; Ren Q; Chai X
    Seeing Perceiving; 2011; 24(2):125-40. PubMed ID: 21864454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rehabilitation regimes based upon psychophysical studies of prosthetic vision.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    J Neural Eng; 2009 Jun; 6(3):035009. PubMed ID: 19458400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion and accuracy of simulated phosphene positioning using tactile board.
    Zhang L; Chai X; Ling S; Fan J; Yang K; Ren Q
    Artif Organs; 2009 Dec; 33(12):1109-16. PubMed ID: 19681837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphene object perception employs holistic processing during early visual processing stage.
    Guo H; Yang Y; Gu G; Zhu Y; Qiu Y
    Artif Organs; 2013 Apr; 37(4):401-8. PubMed ID: 23489114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation to Phosphene Parameters Based on Multi-Object Recognition Using Simulated Prosthetic Vision.
    Xia P; Hu J; Peng Y
    Artif Organs; 2015 Dec; 39(12):1038-45. PubMed ID: 25912967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Object recognition under distorted prosthetic vision.
    Guo H; Wang Y; Yang Y; Tong S; Zhu Y; Qiu Y
    Artif Organs; 2010 Oct; 34(10):846-56. PubMed ID: 20545671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing Chinese character displays improves recognition and reading performance of simulated irregular phosphene maps.
    Lu Y; Kan H; Liu J; Wang J; Tao C; Chen Y; Ren Q; Hu J; Chai X
    Invest Ophthalmol Vis Sci; 2013 Apr; 54(4):2918-26. PubMed ID: 23548619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of phosphene spatial variability for visual prosthesis applications.
    Obeid I; Veraart C; Delbeke J
    Artif Organs; 2010 May; 34(5):358-65. PubMed ID: 20633150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating prosthetic vision: I. Visual models of phosphenes.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    Vision Res; 2009 Jun; 49(12):1493-506. PubMed ID: 19504749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulated prosthetic visual fixation, saccade, and smooth pursuit.
    Hallum LE; Suaning GJ; Taubman DS; Lovell NH
    Vision Res; 2005 Mar; 45(6):775-88. PubMed ID: 15639504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphene thresholds evoked with single and double TMS pulses.
    Kammer T; Baumann LW
    Clin Neurophysiol; 2010 Mar; 121(3):376-9. PubMed ID: 20079689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphenes electrically evoked with DTL electrodes: a study in patients with retinitis pigmentosa, glaucoma, and homonymous visual field loss and normal subjects.
    Gekeler F; Messias A; Ottinger M; Bartz-Schmidt KU; Zrenner E
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):4966-74. PubMed ID: 17065515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating prosthetic vision: II. Measuring functional capacity.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    Vision Res; 2009 Sep; 49(19):2329-43. PubMed ID: 19607855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial magnetic stimulation reveals high test-retest reliability for phosphenes but not for suppression of visual perception.
    Siniatchkin M; Schlicke C; Stephani U
    Clin Neurophysiol; 2011 Dec; 122(12):2475-81. PubMed ID: 21641863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Psychophysics of prosthetic vision: III. stochastic rendering, the phosphene image, and perception.
    Hallum LE; Cloherty SL; Taubman DS; Suaning GJ; Lovell NH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1169-72. PubMed ID: 17946446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized single pulse stimulation strategy for retinal implants.
    Savage CO; Grayden DB; Meffin H; Burkitt AN
    J Neural Eng; 2013 Feb; 10(1):016003. PubMed ID: 23220887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.