BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21810468)

  • 21. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries.
    Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ
    Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The origin of fatty acids in the hydrocarbon-utilizing microorganism Mycobacterium vaccae.
    King DH; Perry JJ
    Can J Microbiol; 1975 Jan; 21(1):85-9. PubMed ID: 1116040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulfate-reducing bacteria.
    Pombo SA; Kleikemper J; Schroth MH; Zeyer J
    FEMS Microbiol Ecol; 2005 Jan; 51(2):197-207. PubMed ID: 16329868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi.
    Rontani JF; Jameson I; Christodoulou S; Volkman JK
    Phytochemistry; 2007 Mar; 68(6):913-24. PubMed ID: 17258251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement.
    Wilkes H; Rabus R; Fischer T; Armstroff A; Behrends A; Widdel F
    Arch Microbiol; 2002 Mar; 177(3):235-43. PubMed ID: 11907679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids.
    Omil F; Lens P; Visser A; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 1998 Mar; 57(6):676-85. PubMed ID: 10099247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The sulfate-reducing capacity of bacteria in the genus Pseudomonas].
    Kliushnikova TM; Chernyshenko DV; Kasatkina TP
    Mikrobiol Zh (1978); 1992; 54(2):49-54. PubMed ID: 1584088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acid-induced structural modifications of unsaturated Fatty acids and phenolic olive oil constituents by nitrite ions: a chemical assessment.
    Napolitano A; Panzella L; Savarese M; Sacchi R; Giudicianni I; Paolillo L; d'Ischia M
    Chem Res Toxicol; 2004 Oct; 17(10):1329-37. PubMed ID: 15487893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus.
    Beller HR; Goh EB; Keasling JD
    Appl Environ Microbiol; 2010 Feb; 76(4):1212-23. PubMed ID: 20038703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens.
    Qiu YL; Sekiguchi Y; Hanada S; Imachi H; Tseng IC; Cheng SS; Ohashi A; Harada H; Kamagata Y
    Arch Microbiol; 2006 Apr; 185(3):172-82. PubMed ID: 16404568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain.
    Ensign SA; Hyman MR; Arp DJ
    Appl Environ Microbiol; 1992 Sep; 58(9):3038-46. PubMed ID: 1444418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture.
    Meckenstock RU; Annweiler E; Michaelis W; Richnow HH; Schink B
    Appl Environ Microbiol; 2000 Jul; 66(7):2743-7. PubMed ID: 10877763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering cytochrome P450s for selective alkene to carbonyl oxidation.
    Klaus C; Hammer SC
    Methods Enzymol; 2023; 693():111-131. PubMed ID: 37977728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endogenous and bioaugmented sulphate reduction in calcareous gypsiferous soils.
    Alfaya F; Cuenca-Sánchez M; Garcia-Orenes F; Lens PN
    Environ Technol; 2009 Nov; 30(12):1305-12. PubMed ID: 19950473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of hydrocarbons by members of the genus Candida. II. Oxidation of n-alkanes and l-alkenes by Candida lipolytica.
    Klug MJ; Markovetz AJ
    J Bacteriol; 1967 Jun; 93(6):1847-52. PubMed ID: 6025303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolomics-based profiling of three terminal alkene-producing Jeotgalicoccus spp. during different growth phase.
    Nusantara Putra FJ; Putri SP; Fukusaki E
    J Biosci Bioeng; 2019 Jan; 127(1):52-58. PubMed ID: 30057157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation of hydrocarbons by members of the genus Candida 3. Oxidative intermediates from 1-hexadecene and 1-heptadecene by Candida lipolytica.
    Klug MJ; Markovetz AJ
    J Bacteriol; 1968 Oct; 96(4):1115-23. PubMed ID: 5685991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.