These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 21810477)
1. Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Ma SM; Garcia DE; Redding-Johanson AM; Friedland GD; Chan R; Batth TS; Haliburton JR; Chivian D; Keasling JD; Petzold CJ; Lee TS; Chhabra SR Metab Eng; 2011 Sep; 13(5):588-97. PubMed ID: 21810477 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase. Balzer GJ; Thakker C; Bennett GN; San KY Metab Eng; 2013 Nov; 20():1-8. PubMed ID: 23876411 [TBL] [Abstract][Full Text] [Related]
3. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Anthony JR; Anthony LC; Nowroozi F; Kwon G; Newman JD; Keasling JD Metab Eng; 2009 Jan; 11(1):13-9. PubMed ID: 18775787 [TBL] [Abstract][Full Text] [Related]
4. Cloning of a gene cluster encoding enzymes responsible for the mevalonate pathway from a terpenoid-antibiotic-producing Streptomyces strain. Hamano Y; Dairi T; Yamamoto M; Kawasaki T; Kaneda K; Kuzuyama T; Itoh N; Seto H Biosci Biotechnol Biochem; 2001 Jul; 65(7):1627-35. PubMed ID: 11515548 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of the class II HMG-CoA reductase of Pseudomonas mevalonii. Hedl M; Rodwell VW Protein Sci; 2004 Jun; 13(6):1693-7. PubMed ID: 15152097 [TBL] [Abstract][Full Text] [Related]
6. Identification, evolution, and essentiality of the mevalonate pathway for isopentenyl diphosphate biosynthesis in gram-positive cocci. Wilding EI; Brown JR; Bryant AP; Chalker AF; Holmes DJ; Ingraham KA; Iordanescu S; So CY; Rosenberg M; Gwynn MN J Bacteriol; 2000 Aug; 182(15):4319-27. PubMed ID: 10894743 [TBL] [Abstract][Full Text] [Related]
7. New Crystallographic Snapshots of Large Domain Movements in Bacterial 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase. Ragwan ER; Arai E; Kung Y Biochemistry; 2018 Oct; 57(39):5715-5725. PubMed ID: 30199631 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Berríos-Rivera SJ; Bennett GN; San KY Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691 [TBL] [Abstract][Full Text] [Related]
9. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Pitera DJ; Paddon CJ; Newman JD; Keasling JD Metab Eng; 2007 Mar; 9(2):193-207. PubMed ID: 17239639 [TBL] [Abstract][Full Text] [Related]
10. Geranylgeranyl-pyrophosphate, an isoprenoid of mevalonate cascade, is a critical compound for rat primary cultured cortical neurons to protect the cell death induced by 3-hydroxy-3-methylglutaryl-CoA reductase inhibition. Tanaka T; Tatsuno I; Uchida D; Moroo I; Morio H; Nakamura S; Noguchi Y; Yasuda T; Kitagawa M; Saito Y; Hirai A J Neurosci; 2000 Apr; 20(8):2852-9. PubMed ID: 10751437 [TBL] [Abstract][Full Text] [Related]
11. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. Tsuruta H; Paddon CJ; Eng D; Lenihan JR; Horning T; Anthony LC; Regentin R; Keasling JD; Renninger NS; Newman JD PLoS One; 2009; 4(2):e4489. PubMed ID: 19221601 [TBL] [Abstract][Full Text] [Related]
13. Effect of different levels of NADH availability on metabolite distribution in Escherichia coli fermentation in minimal and complex media. Berríos-Rivera SJ; Sánchez AM; Bennett GN; San KY Appl Microbiol Biotechnol; 2004 Sep; 65(4):426-32. PubMed ID: 15069588 [TBL] [Abstract][Full Text] [Related]
14. Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Okamura E; Tomita T; Sawa R; Nishiyama M; Kuzuyama T Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11265-70. PubMed ID: 20534558 [TBL] [Abstract][Full Text] [Related]
15. Production of mevalonate by a metabolically-engineered Escherichia coli. Tabata K; Hashimoto S Biotechnol Lett; 2004 Oct; 26(19):1487-91. PubMed ID: 15604784 [TBL] [Abstract][Full Text] [Related]
16. A novel MVA-mediated pathway for isoprene production in engineered E. coli. Yang J; Nie Q; Liu H; Xian M; Liu H BMC Biotechnol; 2016 Jan; 16():5. PubMed ID: 26786050 [TBL] [Abstract][Full Text] [Related]
17. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: enhancement of formate dehydrogenase activity for regeneration of NADH. Mädje K; Schmölzer K; Nidetzky B; Kratzer R Microb Cell Fact; 2012 Jan; 11():7. PubMed ID: 22236335 [TBL] [Abstract][Full Text] [Related]
18. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Berríos-Rivera SJ; Bennett GN; San KY Metab Eng; 2002 Jul; 4(3):230-7. PubMed ID: 12616692 [TBL] [Abstract][Full Text] [Related]
19. An enzymatic platform for the synthesis of isoprenoid precursors. Rodriguez SB; Leyh TS PLoS One; 2014; 9(8):e105594. PubMed ID: 25153179 [TBL] [Abstract][Full Text] [Related]
20. Kinetic characterization of an oxidative, cooperative HMG-CoA reductase from Burkholderia cenocepacia. Schwarz BH; Driver J; Peacock RB; Dembinski HE; Corson MH; Gordon SS; Watson JM Biochim Biophys Acta; 2014 Feb; 1844(2):457-64. PubMed ID: 24316250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]