These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 2181063)

  • 21. Terminal arbors of single ON-center and OFF-center X and Y retinal ganglion cell axons within the ferret's lateral geniculate nucleus.
    Roe AW; Garraghty PE; Sur M
    J Comp Neurol; 1989 Oct; 288(2):208-42. PubMed ID: 2477415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of On and Off retinal pathways and retinogeniculate projections.
    Chalupa LM; Günhan E
    Prog Retin Eye Res; 2004 Jan; 23(1):31-51. PubMed ID: 14766316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade.
    Hartlieb E; Stuermer CA
    J Comp Neurol; 1989 Jun; 284(1):148-68. PubMed ID: 2754029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway.
    Dubin MW; Stark LA; Archer SM
    J Neurosci; 1986 Apr; 6(4):1021-36. PubMed ID: 3701407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synaptic reorganization in the dorsal lateral geniculate nucleus following damage to visual cortex in newborn or adult cats.
    Kalil RE; Behan M
    J Comp Neurol; 1987 Mar; 257(2):216-36. PubMed ID: 3571526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bifurcating projections from the retinal ganglion cells to the primary visual targets (SC and LGN) in the cat.
    Dong K; Qu T; Ahmed AK; Guison NG; Yamada K; Sugioka K; Yamadori T
    Kobe J Med Sci; 1995 Dec; 41(6):221-34. PubMed ID: 8869008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Axon arbors of X and Y retinal ganglion cells are differentially affected by prenatal disruption of binocular inputs.
    Garraghty PE; Shatz CJ; Sretavan DW; Sur M
    Proc Natl Acad Sci U S A; 1988 Oct; 85(19):7361-5. PubMed ID: 3174640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of the lateral geniculate nucleus: interactions between retinal afferent, cytoarchitectonic, and glial cell process lamination in ferrets and tree shrews.
    Hutchins JB; Casagrande VA
    J Comp Neurol; 1990 Aug; 298(1):113-28. PubMed ID: 1698826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prenatal development of individual retinogeniculate axons during the period of segregation.
    Sretavan D; Shatz CJ
    Nature; 1984 Apr 26-May 2; 308(5962):845-8. PubMed ID: 6201743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of the mammalian retinogeniculate pathway: target finding, transient synapses and binocular segregation.
    So KF; Campbell G; Lieberman AR
    J Exp Biol; 1990 Oct; 153():85-104. PubMed ID: 2280230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The development of intrinsic excitability in mouse retinal ganglion cells.
    Qu J; Myhr KL
    Dev Neurobiol; 2008 Aug; 68(9):1196-212. PubMed ID: 18548483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets.
    Cantore WA; Scalia F
    J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Qualitative and quantitative analyses of the patterns of retinal input to neurons in the dorsal lateral geniculate nucleus of the cat.
    Robson JA
    J Comp Neurol; 1993 Aug; 334(2):324-36. PubMed ID: 8366199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pre- and post-critical period induced reduction of Cat-301 immunoreactivity in the lateral geniculate nucleus and visual cortex of cats Y-blocked as adults or made strabismic as kittens.
    Yin ZQ; Crewther SG; Wang C; Crewther DP
    Mol Vis; 2006 Aug; 12():858-66. PubMed ID: 16917486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of spontaneous retinal activity before eye opening in the maturation of form and function in the retinogeniculate pathway of the ferret.
    Cook PM; Prusky G; Ramoa AS
    Vis Neurosci; 1999; 16(3):491-501. PubMed ID: 10349970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An in vitro model of the kitten retinogeniculate pathway.
    Guido W; Lo FS; Erzurumlu RS
    J Neurophysiol; 1997 Jan; 77(1):511-6. PubMed ID: 9120593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Normal eye-specific patterning of retinal inputs to murine subcortical visual nuclei in the absence of brain-derived neurotrophic factor.
    Lyckman AW; Fan G; Rios M; Jaenisch R; Sur M
    Vis Neurosci; 2005; 22(1):27-36. PubMed ID: 15842738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A reassessment of the role of activity in the formation of eye-specific retinogeniculate projections.
    Chalupa LM
    Brain Res Rev; 2007 Oct; 55(2):228-36. PubMed ID: 17433447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.