These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21810899)

  • 1. SEED: efficient clustering of next-generation sequences.
    Bao E; Jiang T; Kaloshian I; Girke T
    Bioinformatics; 2011 Sep; 27(18):2502-9. PubMed ID: 21810899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BRANCH: boosting RNA-Seq assemblies with partial or related genomic sequences.
    Bao E; Jiang T; Girke T
    Bioinformatics; 2013 May; 29(10):1250-9. PubMed ID: 23493323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient classification algorithm for NGS data based on text similarity.
    Liao X; Liao X; Zhu W; Fang L; Chen X
    Genet Res (Camb); 2018 Sep; 100():e8. PubMed ID: 30221607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inference of Markovian properties of molecular sequences from NGS data and applications to comparative genomics.
    Ren J; Song K; Deng M; Reinert G; Cannon CH; Sun F
    Bioinformatics; 2016 Apr; 32(7):993-1000. PubMed ID: 26130573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rainbow: an integrated tool for efficient clustering and assembling RAD-seq reads.
    Chong Z; Ruan J; Wu CI
    Bioinformatics; 2012 Nov; 28(21):2732-7. PubMed ID: 22942077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EasyCluster2: an improved tool for clustering and assembling long transcriptome reads.
    Bevilacqua V; Pietroleonardo N; Giannino E; Stroppa F; Simone D; Pesole G; Picardi E
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S7. PubMed ID: 25474441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grouper: graph-based clustering and annotation for improved de novo transcriptome analysis.
    Malik L; Almodaresi F; Patro R
    Bioinformatics; 2018 Oct; 34(19):3265-3272. PubMed ID: 29746620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. deepBlockAlign: a tool for aligning RNA-seq profiles of read block patterns.
    Langenberger D; Pundhir S; Ekstrøm CT; Stadler PF; Hoffmann S; Gorodkin J
    Bioinformatics; 2012 Jan; 28(1):17-24. PubMed ID: 22053076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ntHash2: recursive spaced seed hashing for nucleotide sequences.
    Kazemi P; Wong J; Nikolić V; Mohamadi H; Warren RL; Birol I
    Bioinformatics; 2022 Oct; 38(20):4812-4813. PubMed ID: 36000872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ScaffMatch: scaffolding algorithm based on maximum weight matching.
    Mandric I; Zelikovsky A
    Bioinformatics; 2015 Aug; 31(16):2632-8. PubMed ID: 25890305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. fmcsR: mismatch tolerant maximum common substructure searching in R.
    Wang Y; Backman TW; Horan K; Girke T
    Bioinformatics; 2013 Nov; 29(21):2792-4. PubMed ID: 23962615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GapFiller: a de novo assembly approach to fill the gap within paired reads.
    Nadalin F; Vezzi F; Policriti A
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S8. PubMed ID: 23095524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HISEA: HIerarchical SEed Aligner for PacBio data.
    Khiste N; Ilie L
    BMC Bioinformatics; 2017 Dec; 18(1):564. PubMed ID: 29258419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets.
    Sharma A; Podolsky R; Zhao J; McIndoe RA
    Bioinformatics; 2009 May; 25(9):1152-7. PubMed ID: 19261720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MeShClust v3.0: high-quality clustering of DNA sequences using the mean shift algorithm and alignment-free identity scores.
    Girgis HZ
    BMC Genomics; 2022 Jun; 23(1):423. PubMed ID: 35668366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PerFSeeB: designing long high-weight single spaced seeds for full sensitivity alignment with a given number of mismatches.
    Titarenko V; Titarenko S
    BMC Bioinformatics; 2023 Oct; 24(1):396. PubMed ID: 37875804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing.
    Tsuchiya M; Amano K; Abe M; Seki M; Hase S; Sato K; Sakakibara Y
    Bioinformatics; 2016 Jun; 32(12):i369-i377. PubMed ID: 27307639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AncestralClust: clustering of divergent nucleotide sequences by ancestral sequence reconstruction using phylogenetic trees.
    Pipes L; Nielsen R
    Bioinformatics; 2022 Jan; 38(3):663-670. PubMed ID: 34668516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alignment-free clustering of UMI tagged DNA molecules.
    Orabi B; Erhan E; McConeghy B; Volik SV; Le Bihan S; Bell R; Collins CC; Chauve C; Hach F
    Bioinformatics; 2019 Jun; 35(11):1829-1836. PubMed ID: 30351359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.