BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21810922)

  • 1. 2-Aminoethyl methylphosphonate, a potent and rapidly acting antagonist of GABA(A)-ρ1 receptors.
    Xie A; Yan J; Yue L; Feng F; Mir F; Abdel-Halim H; Chebib M; Le Breton GC; Standaert RF; Qian H; Pepperberg DR
    Mol Pharmacol; 2011 Dec; 80(6):965-78. PubMed ID: 21810922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.
    Zhang J; Xue F; Chang Y
    Mol Pharmacol; 2008 Oct; 74(4):941-51. PubMed ID: 18599601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (3-Aminocyclopentyl)methylphosphinic acids: novel GABA(C) receptor antagonists.
    Chebib M; Hanrahan JR; Kumar RJ; Mewett KN; Morriss G; Wooller S; Johnston GA
    Neuropharmacology; 2007 Mar; 52(3):779-87. PubMed ID: 17098260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum dot conjugates of GABA and muscimol: binding to α1β2γ2 and ρ1 GABA(A) receptors.
    Gussin HA; Tomlinson ID; Cao D; Qian H; Rosenthal SJ; Pepperberg DR
    ACS Chem Neurosci; 2013 Mar; 4(3):435-43. PubMed ID: 23509979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. trans-4-Amino-2-methylbut-2-enoic acid (2-MeTACA) and (+/-)-trans-2-aminomethylcyclopropanecarboxylic acid ((+/-)-TAMP) can differentiate rat rho3 from human rho1 and rho2 recombinant GABA(C) receptors.
    Vien J; Duke RK; Mewett KN; Johnston GA; Shingai R; Chebib M
    Br J Pharmacol; 2002 Feb; 135(4):883-90. PubMed ID: 11861315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for inhibition mediated by coassembly of GABAA and GABAC receptor subunits in native central neurons.
    Milligan CJ; Buckley NJ; Garret M; Deuchars J; Deuchars SA
    J Neurosci; 2004 Aug; 24(33):7241-50. PubMed ID: 15317850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suramin is a novel competitive antagonist selective to α1β2γ2 GABA
    Luo H; Wood K; Shi FD; Gao F; Chang Y
    Neuropharmacology; 2018 Oct; 141():148-157. PubMed ID: 30172846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABA(C) receptor antagonists differentiate between human rho1 and rho2 receptors expressed in Xenopus oocytes.
    Chebib M; Mewett KN; Johnston GA
    Eur J Pharmacol; 1998 Sep; 357(2-3):227-34. PubMed ID: 9797041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative modulation of the GABA
    Beltrán González AN; Vicentini F; Calvo DJ
    J Neurochem; 2018 Jan; 144(1):50-57. PubMed ID: 29023772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for coassembly of mutant GABAC rho1 with GABAA gamma2S, glycine alpha1 and glycine alpha2 receptor subunits in vitro.
    Pan ZH; Zhang D; Zhang X; Lipton SA
    Eur J Neurosci; 2000 Sep; 12(9):3137-45. PubMed ID: 10998097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo electroretinographic studies of the role of GABAC receptors in retinal signal processing.
    Wang J; Mojumder DK; Yan J; Xie A; Standaert RF; Qian H; Pepperberg DR; Frishman LJ
    Exp Eye Res; 2015 Oct; 139():48-63. PubMed ID: 26164072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory.
    Chebib M; Hinton T; Schmid KL; Brinkworth D; Qian H; Matos S; Kim HL; Abdel-Halim H; Kumar RJ; Johnston GA; Hanrahan JR
    J Pharmacol Exp Ther; 2009 Feb; 328(2):448-57. PubMed ID: 18984654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiating enantioselective actions of GABOB: a possible role for threonine 244 in the binding site of GABA(C) ρ(1) receptors.
    Yamamoto I; Absalom N; Carland JE; Doddareddy MR; Gavande N; Johnston GA; Hanrahan JR; Chebib M
    ACS Chem Neurosci; 2012 Sep; 3(9):665-73. PubMed ID: 23019493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of recombinant GABA receptor/channel subunits by domain-specific antibodies in Xenopus oocytes.
    Ekema GM; Zheng W; Wang L; Lu L
    J Membr Biol; 2001 Oct; 183(3):205-13. PubMed ID: 11696862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of an Inhibitory Alcohol Binding Site in GABAA ρ1 Receptors.
    Borghese CM; Ruiz CI; Lee US; Cullins MA; Bertaccini EJ; Trudell JR; Harris RA
    ACS Chem Neurosci; 2016 Jan; 7(1):100-8. PubMed ID: 26571107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative impact of residues at the intracellular and extracellular ends of the human GABAC rho1 receptor M2 domain on picrotoxinin activity.
    Carland JE; Johnston GA; Chebib M
    Eur J Pharmacol; 2008 Feb; 580(1-2):27-35. PubMed ID: 18031737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of rat superficial superior colliculus neurones: firing properties and sensitivity to GABA.
    Edwards MD; White AM; Platt B
    Neuroscience; 2002; 110(1):93-104. PubMed ID: 11882375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitutions of the highly conserved M2 leucine create spontaneously opening rho1 gamma-aminobutyric acid receptors.
    Chang Y; Weiss DS
    Mol Pharmacol; 1998 Mar; 53(3):511-23. PubMed ID: 9495819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single amino acid change within the ion-channel domain of the gamma-aminobutyric acid rho1 receptor accelerates desensitization and increases taurine agonism.
    Martínez-Torres A; Miledi R
    Arch Med Res; 2004; 35(3):194-8. PubMed ID: 15163459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABA(C) receptors in neuroendocrine gut cells: a new GABA-binding site in the gut.
    Jansen A; Hoepfner M; Herzig KH; Riecken EO; Scherübl H
    Pflugers Arch; 2000 Dec; 441(2-3):294-300. PubMed ID: 11211116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.