These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 21811444)

  • 1. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex.
    Han X; Chow BY; Zhou H; Klapoetke NC; Chuong A; Rajimehr R; Yang A; Baratta MV; Winkle J; Desimone R; Boyden ES
    Front Syst Neurosci; 2011; 5():18. PubMed ID: 21811444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance genetically targetable optical neural silencing by light-driven proton pumps.
    Chow BY; Han X; Dobry AS; Qian X; Chuong AS; Li M; Henninger MA; Belfort GM; Lin Y; Monahan PE; Boyden ES
    Nature; 2010 Jan; 463(7277):98-102. PubMed ID: 20054397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice.
    Tsunematsu T; Tabuchi S; Tanaka KF; Boyden ES; Tominaga M; Yamanaka A
    Behav Brain Res; 2013 Oct; 255():64-74. PubMed ID: 23707248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optogenetic application of proton pump ArchT to C. elegans cells.
    Okazaki A; Takagi S
    Neurosci Res; 2013 Jan; 75(1):29-34. PubMed ID: 23044183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WONOEP appraisal: optogenetic tools to suppress seizures and explore the mechanisms of epileptogenesis.
    Mantoan Ritter L; Golshani P; Takahashi K; Dufour S; Valiante T; Kokaia M
    Epilepsia; 2014 Nov; 55(11):1693-702. PubMed ID: 25303540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical silencing of C. elegans cells with arch proton pump.
    Okazaki A; Sudo Y; Takagi S
    PLoS One; 2012; 7(5):e35370. PubMed ID: 22629299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttraining optogenetic manipulations of basolateral amygdala activity modulate consolidation of inhibitory avoidance memory in rats.
    Huff ML; Miller RL; Deisseroth K; Moorman DE; LaLumiere RT
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3597-602. PubMed ID: 23401523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel analgesic approach to optogenetically and specifically inhibit pain transmission using TRPV1 promoter.
    Li B; Yang XY; Qian FP; Tang M; Ma C; Chiang LY
    Brain Res; 2015 Jun; 1609():12-20. PubMed ID: 25797803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans.
    Husson SJ; Liewald JF; Schultheis C; Stirman JN; Lu H; Gottschalk A
    PLoS One; 2012; 7(7):e40937. PubMed ID: 22815873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems.
    Ferenczi EA; Tan X; Huang CL
    Front Physiol; 2019; 10():1096. PubMed ID: 31572204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical silencing of C. elegans cells with light-driven proton pumps.
    Okazaki A; Takahashi M; Toyoda N; Takagi S
    Methods; 2014 Aug; 68(3):425-30. PubMed ID: 24593985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Spatial Extent of Optogenetic Silencing in Transgenic Mice Expressing Channelrhodopsin in Inhibitory Interneurons.
    Babl SS; Rummell BP; Sigurdsson T
    Cell Rep; 2019 Oct; 29(5):1381-1395.e4. PubMed ID: 31665647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector.
    Sakai S; Ueno K; Ishizuka T; Yawo H
    Neurosci Res; 2013 Jan; 75(1):59-64. PubMed ID: 22469653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and reversible neural inactivation in macaque cortex by optogenetic stimulation of GABAergic neurons.
    De A; El-Shamayleh Y; Horwitz GD
    Elife; 2020 May; 9():. PubMed ID: 32452766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetically encoded molecular tools for light-driven silencing of targeted neurons.
    Chow BY; Han X; Boyden ES
    Prog Brain Res; 2012; 196():49-61. PubMed ID: 22341320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood Pressure Regulation by the Rostral Ventrolateral Medulla in Conscious Rats: Effects of Hypoxia, Hypercapnia, Baroreceptor Denervation, and Anesthesia.
    Wenker IC; Abe C; Viar KE; Stornetta DS; Stornetta RL; Guyenet PG
    J Neurosci; 2017 Apr; 37(17):4565-4583. PubMed ID: 28363984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational models of optogenetic tools for controlling neural circuits with light.
    Nikolic K; Jarvis S; Grossman N; Schultz S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5934-7. PubMed ID: 24111090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy.
    Williams RH; Tsunematsu T; Thomas AM; Bogyo K; Yamanaka A; Kilduff TS
    J Neurosci; 2019 Nov; 39(47):9435-9452. PubMed ID: 31628177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.
    Zolnik TA; Sha F; Johenning FW; Schreiter ER; Looger LL; Larkum ME; Sachdev RN
    J Physiol; 2017 Mar; 595(5):1465-1477. PubMed ID: 27861906
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 22.