These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21811578)

  • 1. Analysis of micro- and nano-structures of the corneal surface of Drosophila and its mutants by atomic force microscopy and optical diffraction.
    Kryuchkov M; Katanaev VL; Enin GA; Sergeev A; Timchenko AA; Serdyuk IN
    PLoS One; 2011; 6(7):e22237. PubMed ID: 21811578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An RNAi Screen for Genes Involved in Nanoscale Protrusion Formation on Corneal Lens in Drosophila melanogaster.
    Minami R; Sato C; Yamahama Y; Kubo H; Hariyama T; Kimura KI
    Zoolog Sci; 2016 Dec; 33(6):583-591. PubMed ID: 27927092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative characterization of adhesion and stiffness of corneal lens of Drosophila melanogaster using atomic force microscopy.
    Lavanya Devi AL; Nongthomba U; Bobji MS
    J Mech Behav Biomed Mater; 2016 Jan; 53():161-173. PubMed ID: 26327451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light on the moth-eye corneal nipple array of butterflies.
    Stavenga DG; Foletti S; Palasantzas G; Arikawa K
    Proc Biol Sci; 2006 Mar; 273(1587):661-7. PubMed ID: 16608684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse set of Turing nanopatterns coat corneae across insect lineages.
    Blagodatski A; Sergeev A; Kryuchkov M; Lopatina Y; Katanaev VL
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10750-5. PubMed ID: 26307762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells.
    Dewan R; Fischer S; Meyer-Rochow VB; Ă–zdemir Y; Hamraz S; Knipp D
    Bioinspir Biomim; 2012 Mar; 7(1):016003. PubMed ID: 22155981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse and forward engineering of Drosophila corneal nanocoatings.
    Kryuchkov M; Bilousov O; Lehmann J; Fiebig M; Katanaev VL
    Nature; 2020 Sep; 585(7825):383-389. PubMed ID: 32939070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparative Study of Crystallography and Defect Structure of Corneal Nipple Array in
    Varija Raghu S; Thamankar R
    ACS Omega; 2020 Sep; 5(37):23662-23671. PubMed ID: 32984686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cuticular nature of corneal lenses in Drosophila melanogaster.
    Stahl AL; Charlton-Perkins M; Buschbeck EK; Cook TA
    Dev Genes Evol; 2017 Jul; 227(4):271-278. PubMed ID: 28477155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of corneal lens chitin in dragonfly compound eyes.
    Kaya M; Sargin I; Al-Jaf I; Erdogan S; Arslan G
    Int J Biol Macromol; 2016 Aug; 89():54-61. PubMed ID: 27109757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogel contact lens-corneal interactions: a new mechanism for deposit formation and corneal injury.
    Goldberg EP; Bhatia S; Enns JB
    CLAO J; 1997 Oct; 23(4):243-8. PubMed ID: 9348448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of adult Drosophila eyes for thin sectioning and microscopic analysis.
    Jenny A
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21897355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human cornea and sclera studied by atomic force microscopy.
    Meller D; Peters K; Meller K
    Cell Tissue Res; 1997 Apr; 288(1):111-8. PubMed ID: 9042778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructure of the ocellar visual system in normal and mutant Drosophila melanogaster.
    Stark WS; Sapp R; Carlson SD
    J Neurogenet; 1989 May; 5(2):127-53. PubMed ID: 2500507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Notum coordinates synapse development via extracellular regulation of Wingless trans-synaptic signaling.
    Kopke DL; Lima SC; Alexandre C; Broadie K
    Development; 2017 Oct; 144(19):3499-3510. PubMed ID: 28860114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative thoracic anatomy of the wild type and wingless (wg
    Fabian B; Schneeberg K; Beutel RG
    Arthropod Struct Dev; 2016 Nov; 45(6):611-636. PubMed ID: 27720953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function dissection of the frizzled receptor in Drosophila melanogaster suggests different mechanisms of action in planar polarity and canonical Wnt signaling.
    Strutt D; Madder D; Chaudhary V; Artymiuk PJ
    Genetics; 2012 Dec; 192(4):1295-313. PubMed ID: 23023003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Always on the bright side of life: anti-adhesive properties of insect ommatidia grating.
    Peisker H; Gorb SN
    J Exp Biol; 2010 Oct; 213(Pt 20):3457-62. PubMed ID: 20889826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative moth-eye nanostructures: antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors.
    Kryuchkov M; Lehmann J; Schaab J; Cherepanov V; Blagodatski A; Fiebig M; Katanaev VL
    J Nanobiotechnology; 2017 Sep; 15(1):61. PubMed ID: 28877691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway.
    Kennerdell JR; Carthew RW
    Cell; 1998 Dec; 95(7):1017-26. PubMed ID: 9875855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.