These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications. Park J; Li J; Han A Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640 [TBL] [Abstract][Full Text] [Related]
5. Reversibly-bonded microfluidic devices for stable cell culture and rapid, gentle cell extraction. Feng X; Wu Z; Cheng LKW; Xiang Y; Sugimura R; Lin X; Wu AR Lab Chip; 2024 Jul; 24(14):3546-3555. PubMed ID: 38949063 [TBL] [Abstract][Full Text] [Related]
6. Micropattern array with gradient size (µPAGS) plastic surfaces fabricated by PDMS (polydimethylsiloxane) mold-based hot embossing technique for investigation of cell-surface interaction. Choi MJ; Park JY; Cha KJ; Rhie JW; Cho DW; Kim DS Biofabrication; 2012 Dec; 4(4):045006. PubMed ID: 23075468 [TBL] [Abstract][Full Text] [Related]
7. Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Young EW; Berthier E; Guckenberger DJ; Sackmann E; Lamers C; Meyvantsson I; Huttenlocher A; Beebe DJ Anal Chem; 2011 Feb; 83(4):1408-17. PubMed ID: 21261280 [TBL] [Abstract][Full Text] [Related]
8. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices. Nock V; Blaikie RJ; David T Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072 [TBL] [Abstract][Full Text] [Related]
9. Micropatterning of polymer substrates for cell culture. Yu S; Liu D; Wang T; Lee YZ; Wong JCN; Song X J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1525-1533. PubMed ID: 33590658 [TBL] [Abstract][Full Text] [Related]
11. Hard top soft bottom microfluidic devices for cell culture and chemical analysis. Mehta G; Lee J; Cha W; Tung YC; Linderman JJ; Takayama S Anal Chem; 2009 May; 81(10):3714-22. PubMed ID: 19382754 [TBL] [Abstract][Full Text] [Related]
12. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. van Midwoud PM; Janse A; Merema MT; Groothuis GM; Verpoorte E Anal Chem; 2012 May; 84(9):3938-44. PubMed ID: 22444457 [TBL] [Abstract][Full Text] [Related]
13. Spatially defined hydrophobic coating of a microwell-patterned hydrophilic polymer substrate for targeted adhesion with high-resolution soft lithography. Lee NY Colloids Surf B Biointerfaces; 2013 Nov; 111():313-20. PubMed ID: 23838198 [TBL] [Abstract][Full Text] [Related]
14. Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions. Markov DA; Lillie EM; Garbett SP; McCawley LJ Biomed Microdevices; 2014 Feb; 16(1):91-6. PubMed ID: 24065585 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of microfluidic devices containing patterned microwell arrays. Henley WH; Dennis PJ; Ramsey JM Anal Chem; 2012 Feb; 84(3):1776-80. PubMed ID: 22242542 [TBL] [Abstract][Full Text] [Related]
16. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics. Muluneh M; Issadore D Lab Chip; 2014 Dec; 14(23):4552-8. PubMed ID: 25284502 [TBL] [Abstract][Full Text] [Related]
18. Simple Surface Modification of Poly(dimethylsiloxane) via Surface Segregating Smart Polymers for Biomicrofluidics. Gökaltun A; Kang YBA; Yarmush ML; Usta OB; Asatekin A Sci Rep; 2019 May; 9(1):7377. PubMed ID: 31089162 [TBL] [Abstract][Full Text] [Related]
19. Use of directly molded poly(methyl methacrylate) channels for microfluidic applications. Lee SH; Kang DH; Kim HN; Suh KY Lab Chip; 2010 Dec; 10(23):3300-6. PubMed ID: 20938498 [TBL] [Abstract][Full Text] [Related]
20. PDMS compound adsorption in context. Li N; Schwartz M; Ionescu-Zanetti C J Biomol Screen; 2009 Feb; 14(2):194-202. PubMed ID: 19196703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]