These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21811716)

  • 1. Pyroelectric Adaptive Nanodispenser (PYRANA) microrobot for liquid delivery on a target.
    Vespini V; Coppola S; Grilli S; Paturzo M; Ferraro P
    Lab Chip; 2011 Sep; 11(18):3148-52. PubMed ID: 21811716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedback control system simulator for the control of biological cells in microfluidic cross slots and integrated microfluidic systems.
    Curtis MD; Sheard GJ; Fouras A
    Lab Chip; 2011 Jul; 11(14):2343-51. PubMed ID: 21611664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices.
    Lopez-de la Fuente MS; Moncada-Hernandez H; Perez-Gonzalez VH; Lapizco-Encinas BH; Martinez-Chapa SO
    Rev Sci Instrum; 2013 Mar; 84(3):035103. PubMed ID: 23556848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optoelectrofluidic platforms for chemistry and biology.
    Hwang H; Park JK
    Lab Chip; 2011 Jan; 11(1):33-47. PubMed ID: 20944856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms.
    Crevillén AG; Pumera M; González MC; Escarpa A
    Lab Chip; 2009 Jan; 9(2):346-53. PubMed ID: 19107295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic probe: a new tool for integrating microfluidic environments and electronic wafer-probing.
    Routenberg DA; Reed MA
    Lab Chip; 2010 Jan; 10(1):123-7. PubMed ID: 20024060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications.
    Mogensen KB; Gangloff L; Boggild P; Teo KB; Milne WI; Kutter JP
    Nanotechnology; 2009 Mar; 20(9):095503. PubMed ID: 19417490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable fabrication of micro-structured lab-on-a-chip.
    Oh HJ; Park JH; Lee SJ; Kim BI; Song YS; Youn JR
    Lab Chip; 2011 Dec; 11(23):3999-4005. PubMed ID: 21918762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip.
    Shahini M; Yeow JT
    Nanotechnology; 2011 Aug; 22(32):325705. PubMed ID: 21775777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An RNA-DNA hybridization assay chip with electrokinetically controlled oil droplet valves for sequential microfluidic operations.
    Weng X; Jiang H; Chon CH; Chen S; Cao H; Li D
    J Biotechnol; 2011 Sep; 155(3):330-7. PubMed ID: 21820019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip.
    Chen HM; Pang L; Gordon MS; Fainman Y
    Small; 2011 Oct; 7(19):2750-7. PubMed ID: 21842478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heteronanojunctions with atomic size control using a lab-on-chip electrochemical approach with integrated microfluidics.
    Lunca Popa P; Dalmas G; Faramarzi V; Dayen JF; Majjad H; Kemp NT; Doudin B
    Nanotechnology; 2011 May; 22(21):215302. PubMed ID: 21451221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-of-flight thermal flowrate sensor for lab-on-chip applications.
    Berthet H; Jundt J; Durivault J; Mercier B; Angelescu D
    Lab Chip; 2011 Jan; 11(2):215-23. PubMed ID: 21072440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated, controlled deposition of nanoparticles on polyelectrolyte-coated silicon from chemomechanically patterned droplet arrays.
    Owen JI; Niederhauser TL; Wacaser BA; Christenson MP; Davis RC; Linford MR
    Lab Chip; 2004 Dec; 4(6):553-7. PubMed ID: 15570364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of hydrodynamically confined microfluidics: controlling flow envelope and pressure.
    Christ KV; Turner KT
    Lab Chip; 2011 Apr; 11(8):1491-501. PubMed ID: 21359386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lab-On-a-Chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB).
    Yang M; Sun S; Kostov Y; Rasooly A
    Lab Chip; 2010 Apr; 10(8):1011-7. PubMed ID: 20358108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetic liquid pistons for capillarity-based pumping.
    Malouin BA; Vogel MJ; Olles JD; Cheng L; Hirsa AH
    Lab Chip; 2011 Feb; 11(3):393-7. PubMed ID: 21127823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.