These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21811739)

  • 1. Growth of immobilized DNA by polymerase: bridging nanoelectrodes with individual dsDNA molecules.
    Linko V; Leppiniemi J; Shen B; Niskanen E; Hytönen VP; Toppari JJ
    Nanoscale; 2011 Sep; 3(9):3788-92. PubMed ID: 21811739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping and immobilization of DNA molecules between nanoelectrodes.
    Kuzyk A; Toppari JJ; Törmä P
    Methods Mol Biol; 2011; 749():223-34. PubMed ID: 21674376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of DNA nanostructures with repetitive binding motifs by rolling circle amplification.
    Reiss E; Hölzel R; Bier FF
    Methods Mol Biol; 2011; 749():151-68. PubMed ID: 21674371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids.
    Carpini G; Lucarelli F; Marrazza G; Mascini M
    Biosens Bioelectron; 2004 Sep; 20(2):167-75. PubMed ID: 15308218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient isothermal DNA amplification system using three elements of 5'-DNA-RNA-3' chimeric primers, RNaseH and strand-displacing DNA polymerase.
    Mukai H; Uemori T; Takeda O; Kobayashi E; Yamamoto J; Nishiwaki K; Enoki T; Sagawa H; Asada K; Kato I
    J Biochem; 2007 Aug; 142(2):273-81. PubMed ID: 17720718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thionin attached to a gold electrode modified with self-assembly of Mo(6)S(9-X)I(X) nanowires for amplified electrochemical detection of natural DNA.
    Lin H; Cheng H; Liu L; Zhu Z; Shao Y; Papakonstantinou P; Mihailovič D; Li M
    Biosens Bioelectron; 2011 Jan; 26(5):1866-70. PubMed ID: 20172709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of loop-mediated isothermal DNA amplification.
    Fu S; Qu G; Guo S; Ma L; Zhang N; Zhang S; Gao S; Shen Z
    Appl Biochem Biotechnol; 2011 Apr; 163(7):845-50. PubMed ID: 20844984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BEAMing up for detection and quantification of rare sequence variants.
    Li M; Diehl F; Dressman D; Vogelstein B; Kinzler KW
    Nat Methods; 2006 Feb; 3(2):95-7. PubMed ID: 16432518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids.
    Zhao W; Ali MM; Brook MA; Li Y
    Angew Chem Int Ed Engl; 2008; 47(34):6330-7. PubMed ID: 18680110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple sequence repeats amplification.
    Ravishankar KV; Bommisetty P
    Methods Mol Biol; 2013; 1006():133-8. PubMed ID: 23546788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isothermal target and signaling probe amplification method, based on a combination of an isothermal chain amplification technique and a fluorescence resonance energy transfer cycling probe technology.
    Jung C; Chung JW; Kim UO; Kim MH; Park HG
    Anal Chem; 2010 Jul; 82(14):5937-43. PubMed ID: 20575518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enabling measurements of low-conductance single molecules using gold nanoelectrodes.
    Welch K; Blom T; Leifer K; Strømme M
    Nanotechnology; 2011 Mar; 22(12):125707. PubMed ID: 21317485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oriented and vectorial immobilization of linear M13 dsDNA between interdigitated electrodes--towards single molecule DNA nanostructures.
    Hölzel R; Gajovic-Eichelmann N; Bier FF
    Biosens Bioelectron; 2003 May; 18(5-6):555-64. PubMed ID: 12706562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct polymerase synthesis of reactive aldehyde-functionalized DNA and its conjugation and staining with hydrazines.
    Raindlová V; Pohl R; Sanda M; Hocek M
    Angew Chem Int Ed Engl; 2010 Feb; 49(6):1064-6. PubMed ID: 20041461
    [No Abstract]   [Full Text] [Related]  

  • 15. DNA amplification via polymerase chain reaction inside miniemulsion droplets with subsequent poly(n-butylcyanoacrylate) shell formation and delivery of polymeric capsules into mammalian cells.
    Baier G; Musyanovych A; Landfester K; Best A; Lorenz S; Mailänder V
    Macromol Biosci; 2011 Aug; 11(8):1099-109. PubMed ID: 21557476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleic acid isothermal amplification technologies: a review.
    Gill P; Ghaemi A
    Nucleosides Nucleotides Nucleic Acids; 2008 Mar; 27(3):224-43. PubMed ID: 18260008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes.
    Zhang J; Song S; Zhang L; Wang L; Wu H; Pan D; Fan C
    J Am Chem Soc; 2006 Jul; 128(26):8575-80. PubMed ID: 16802824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCR and DNA sequencing.
    Gyllensten UB
    Biotechniques; 1989; 7(7):700-8. PubMed ID: 2698653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of efficient fluorophores for the direct labeling of DNA via rolling circle amplification (RCA) polymerase φ29.
    Linck L; Resch-Genger U
    Eur J Med Chem; 2010 Dec; 45(12):5561-6. PubMed ID: 20926164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible electronic nanoswitch based on DNA G-quadruplex conformation: a platform for single-step, reagentless potassium detection.
    Wu ZS; Chen CR; Shen GL; Yu RQ
    Biomaterials; 2008 Jun; 29(17):2689-96. PubMed ID: 18358528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.