BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21812411)

  • 21. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
    Wu H; Huang B; Zare RN
    Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications.
    Mosadegh B; Agarwal M; Torisawa YS; Takayama S
    Lab Chip; 2010 Aug; 10(15):1983-6. PubMed ID: 20502832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile patterning of reduced graphene oxide film into microelectrode array for highly sensitive sensing.
    Li F; Xue M; Ma X; Zhang M; Cao T
    Anal Chem; 2011 Aug; 83(16):6426-30. PubMed ID: 21761929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Poly(dimethylsiloxane) contamination in microcontact printing and its influence on patterning oligonucleotides.
    Thibault C; Séverac C; Mingotaud AF; Vieu C; Mauzac M
    Langmuir; 2007 Oct; 23(21):10706-14. PubMed ID: 17803329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP).
    Balmer TE; Schmid H; Stutz R; Delamarche E; Michel B; Spencer ND; Wolf H
    Langmuir; 2005 Jan; 21(2):622-32. PubMed ID: 15641832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simple method for preparation of macroporous polydimethylsiloxane membrane for microfluidic chip-based isoelectric focusing applications.
    Ou J; Ren CL; Pawliszyn J
    Anal Chim Acta; 2010 Mar; 662(2):200-5. PubMed ID: 20171320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of three-dimensional microarray structures by controlling the thickness and elasticity of poly(dimethylsiloxane) membrane.
    Lee DH; Park JY; Lee EJ; Choi YY; Kwon GH; Kim BM; Lee SH
    Biomed Microdevices; 2010 Feb; 12(1):49-54. PubMed ID: 19777351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic cell volume sensor with tunable sensitivity.
    Riordon J; Mirzaei M; Godin M
    Lab Chip; 2012 Sep; 12(17):3016-9. PubMed ID: 22782650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures.
    Faid K; Voicu R; Bani-Yaghoub M; Tremblay R; Mealing G; Py C; Barjovanu R
    Biomed Microdevices; 2005 Sep; 7(3):179-84. PubMed ID: 16133804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional patterning of PDMS microfluidic devices using integrated chemo-masks.
    Romanowsky MB; Heymann M; Abate AR; Krummel AT; Fraden S; Weitz DA
    Lab Chip; 2010 Jun; 10(12):1521-4. PubMed ID: 20454730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-density fabrication of normally closed microfluidic valves by patterned deactivation of oxidized polydimethylsiloxane.
    Mosadegh B; Tavana H; Lesher-Perez SC; Takayama S
    Lab Chip; 2011 Feb; 11(4):738-42. PubMed ID: 21132212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microcontact printing of proteins inside microstructures.
    Foley J; Schmid H; Stutz R; Delamarche E
    Langmuir; 2005 Nov; 21(24):11296-303. PubMed ID: 16285803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis.
    Hung LH; Choi KM; Tseng WY; Tan YC; Shea KJ; Lee AP
    Lab Chip; 2006 Feb; 6(2):174-8. PubMed ID: 16450024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulating two-dimensional non-close-packed colloidal crystal arrays by deformable soft lithography.
    Li X; Wang T; Zhang J; Yan X; Zhang X; Zhu D; Li W; Zhang X; Yang B
    Langmuir; 2010 Feb; 26(4):2930-6. PubMed ID: 19715332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins.
    Ou J; Glawdel T; Ren CL; Pawliszyn J
    Lab Chip; 2009 Jul; 9(13):1926-32. PubMed ID: 19532968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays.
    Pla-Roca M; Juncker D
    Methods Mol Biol; 2011; 671():177-94. PubMed ID: 20967630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Easily fabricated magnetic traps for single-cell applications.
    Koschwanez JH; Carlson RH; Meldrum DR
    Rev Sci Instrum; 2007 Apr; 78(4):044301. PubMed ID: 17477681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Creating Sub-50 Nm Nanofluidic Junctions in PDMS Microfluidic Chip via Self-Assembly Process of Colloidal Particles.
    Wei X; Syed A; Mao P; Han J; Song YA
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.