BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21812411)

  • 41. Elastomeric microvalves as tunable nanochannels for concentration polarization.
    Quist J; Trietsch SJ; Vulto P; Hankemeier T
    Lab Chip; 2013 Dec; 13(24):4810-5. PubMed ID: 24158567
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8.
    Zhang J; Chan-Park MB; Conner SR
    Lab Chip; 2004 Dec; 4(6):646-53. PubMed ID: 15570379
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adhesion assays of endothelial cells on nanopatterned surfaces within a microfluidic channel.
    Hwang SY; Kwon KW; Jang KJ; Park MC; Lee JS; Suh KY
    Anal Chem; 2010 Apr; 82(7):3016-22. PubMed ID: 20218573
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A nanofluidic device for single molecule studies with in situ control of environmental solution conditions.
    Zhang C; Jiang K; Liu F; Doyle PS; van Kan JA; van der Maarel JR
    Lab Chip; 2013 Jul; 13(14):2821-6. PubMed ID: 23674166
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plastic masters-rigid templates for soft lithography.
    Desai SP; Freeman DM; Voldman J
    Lab Chip; 2009 Jun; 9(11):1631-7. PubMed ID: 19458873
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.
    Kim SM; Burns MA; Hasselbrink EF
    Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic permeation printing of self-assembled monolayer gradients on surfaces for chemoselective ligand immobilization applied to cell adhesion and polarization.
    Lamb BM; Park S; Yousaf MN
    Langmuir; 2010 Aug; 26(15):12817-23. PubMed ID: 20586451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On-chip self-assembly of cell embedded microstructures to vascular-like microtubes.
    Yue T; Nakajima M; Takeuchi M; Hu C; Huang Q; Fukuda T
    Lab Chip; 2014 Mar; 14(6):1151-61. PubMed ID: 24472895
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Patterning microbeads inside poly(dimethylsiloxane) microfluidic channels and its application for immobilized microfluidic enzyme reactors.
    Zhang Q; Xu JJ; Chen HY
    Electrophoresis; 2006 Dec; 27(24):4943-51. PubMed ID: 17117456
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Small molecule-folic acid modification on nanopatterned PDMS and investigation on its surface property.
    Hu Y; Ma B; Zhang Y; Wang M
    Biomed Microdevices; 2014 Jun; 16(3):487-97. PubMed ID: 24627217
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of background signals from fluorescence thermometry measurements in PDMS microchannels using fluorescence lifetime imaging.
    Robinson T; Schaerli Y; Wootton R; Hollfelder F; Dunsby C; Baldwin G; Neil M; French P; deMello A
    Lab Chip; 2009 Dec; 9(23):3437-41. PubMed ID: 19904413
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Study of SU-8 to make a Ni master-mold: Adhesion, sidewall profile, and removal.
    Kim SJ; Yang H; Kim K; Lim YT; Pyo HB
    Electrophoresis; 2006 Aug; 27(16):3284-96. PubMed ID: 16915575
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contamination of PDMS microchannels by lithographic molds.
    Bubendorfer AJ; Ingham B; Kennedy JV; Arnold WM
    Lab Chip; 2013 Nov; 13(22):4312-6. PubMed ID: 24080639
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microscale features and surface chemical functionality patterned by electron beam lithography: a novel route to poly(dimethylsiloxane) (PDMS) stamp fabrication.
    Russell MT; Pingree LS; Hersam MC; Marks TJ
    Langmuir; 2006 Jul; 22(15):6712-8. PubMed ID: 16831018
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels.
    Ebara M; Hoffman JM; Hoffman AS; Stayton PS
    Lab Chip; 2006 Jul; 6(7):843-8. PubMed ID: 16804587
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate.
    Wu MH; Cai H; Xu X; Urban JP; Cui ZF; Cui Z
    Biomed Microdevices; 2005 Dec; 7(4):323-9. PubMed ID: 16404510
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Micropatterning of neural stem cells and Purkinje neurons using a polydimethylsiloxane (PDMS) stencil.
    Choi JH; Lee H; Jin HK; Bae JS; Kim GM
    Lab Chip; 2012 Dec; 12(23):5045-50. PubMed ID: 23042549
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reciprocating flow-based centrifugal microfluidics mixer.
    Noroozi Z; Kido H; Micic M; Pan H; Bartolome C; Princevac M; Zoval J; Madou M
    Rev Sci Instrum; 2009 Jul; 80(7):075102. PubMed ID: 19655976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.