BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21813085)

  • 1. Alumina nanoparticles enhance growth of Lemna minor.
    Juhel G; Batisse E; Hugues Q; Daly D; van Pelt FN; O'Halloran J; Jansen MA
    Aquat Toxicol; 2011 Oct; 105(3-4):328-36. PubMed ID: 21813085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytotoxicity of silver nanoparticles to Lemna minor L.
    Gubbins EJ; Batty LC; Lead JR
    Environ Pollut; 2011 Jun; 159(6):1551-9. PubMed ID: 21450381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor.
    Amy-Sagers C; Reinhardt K; Larson DM
    Aquat Toxicol; 2017 Apr; 185():76-85. PubMed ID: 28192727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoprotective influence of bacteria on growth and cadmium accumulation in the aquatic plant Lemna minor.
    Stout LM; Dodova EN; Tyson JF; Nüsslein K
    Water Res; 2010 Sep; 44(17):4970-9. PubMed ID: 20732704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limitations of growth-parameters in Lemna gibba bioassays for arsenic and uranium under variable phosphate availability.
    Mkandawire M; Taubert B; Dudel EG
    Ecotoxicol Environ Saf; 2006 Sep; 65(1):118-28. PubMed ID: 16029890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L.
    Perreault F; Samadani M; Dewez D
    Nanotoxicology; 2014 Jun; 8(4):374-82. PubMed ID: 23521766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel bioassay using root re-growth in Lemna.
    Park A; Kim YJ; Choi EM; Brown MT; Han T
    Aquat Toxicol; 2013 Sep; 140-141():415-24. PubMed ID: 23917640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effects of elevated CO2 and Cd-contaminated water on growth, photosynthetic response, Cd accumulation and thiolic components status in Lemna minor L.
    Pietrini F; Bianconi D; Massacci A; Iannelli MA
    J Hazard Mater; 2016 May; 309():77-86. PubMed ID: 26875143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel mechanism of abscission in fronds of Lemna minor L. and the effect of silver ions.
    Topp C; Henke R; Keresztes A; Fischer W; Eberius M; Appenroth KJ
    Plant Biol (Stuttg); 2011 May; 13(3):517-23. PubMed ID: 21489103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria.
    Marsalek B; Jancula D; Marsalkova E; Mashlan M; Safarova K; Tucek J; Zboril R
    Environ Sci Technol; 2012 Feb; 46(4):2316-23. PubMed ID: 22242974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor.
    Pomati F; Netting AG; Calamari D; Neilan BA
    Aquat Toxicol; 2004 May; 67(4):387-96. PubMed ID: 15084414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root length of aquatic plant, Lemna minor L., as an optimal toxicity endpoint for biomonitoring of mining effluents.
    Gopalapillai Y; Vigneault B; Hale BA
    Integr Environ Assess Manag; 2014 Oct; 10(4):493-7. PubMed ID: 25045146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems.
    Santos SM; Dinis AM; Rodrigues DM; Peixoto F; Videira RA; Jurado AS
    Aquat Toxicol; 2013 Oct; 142-143():347-54. PubMed ID: 24084257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes.
    Sinha S; Saxena R; Singh S
    Chemosphere; 2005 Feb; 58(5):595-604. PubMed ID: 15620753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2,4,6-Trichlorophenol mediated increases in extracellular peroxidase activity in three species of Lemnaceae.
    Biswas DK; Scannell G; Akhmetov N; Fitzpatrick D; Jansen MA
    Aquat Toxicol; 2010 Nov; 100(3):289-94. PubMed ID: 20810175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment.
    Debez A; Koyro HW; Grignon C; Abdelly C; Huchzermeyer B
    Physiol Plant; 2008 Jun; 133(2):373-85. PubMed ID: 18346075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ozone impacts on allometry and root hydraulic conductance are not mediated by source limitation nor developmental age.
    Grantz DA; Yang S
    J Exp Bot; 2000 May; 51(346):919-27. PubMed ID: 10948218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea In vitro plantlets.
    Gomez-Garay A; Pintos B; Manzanera JA; Lobo C; Villalobos N; Martín L
    Biol Trace Elem Res; 2014 Oct; 161(1):143-50. PubMed ID: 25104098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio.
    Souza LRR; Bernardes LE; Barbetta MFS; da Veiga MAMS
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):24121-24131. PubMed ID: 31228067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term exposure to elevated atmospheric CO2 benefits the growth of a facultative annual root hemiparasite, Rhinanthus minor (L.), more than that of its host, Poa pratensis (L.).
    Hwangbo JK; Seel WE; Woodin SJ
    J Exp Bot; 2003 Aug; 54(389):1951-5. PubMed ID: 12837814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.